ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

3-Chloro-4-fluorophenoxy substituted zinc phthalocyanine/graphene oxide composites: exploring of their sono-photochemical properties

Armağan Günsel, Mehmet Can Küçük, Hilal Günsel, Göknur Yaşa Atmaca, Ahmet T. Bilgiçli, Ali Erdoğmuş, and M. Nilüfer Yarasir

Department of Chemistry, Faculty of Science, Sakarya University, Serdivan, Turkey

 

E-mail: nyarasir@sakarya.edu.tr

Received: 8 February 2023  Accepted: 25 May 2023

Abstract:

The purpose of this paper is to determine the therapeutic contribution of graphene oxide (GO) to photo/sonosensitizers through photo-physicochemical and sono-photochemical studies for the first time. In this way, new zinc (II) phthalocyanine bearing 3-chloro-4-fluorophenoxy (2) was synthesized; and then, its graphene oxide (GO)-based composites were prepared by noncovalently coating ZnPc (2) on the graphene oxide surface. The photo-activity of these materials was compared and discussed in terms of their potential ability to be used in photosensitizer in photodynamic therapy (PDT) and sono-photodynamic therapy (SPDT). In these application areas, graphene oxide can serve as photosensitizer carrier, while ZnPc (2) can be acting as PDT/SPDT agent. Therefore, phthalocyanine composites containing different percentages of graphene oxide by weight (wt% GO) were prepared. SEM (scanning electron microscopy) results supported the interaction between GO and ZnPc (2). In the sono-photochemical study (SPDT), both ZnPc (2) and its composites gave very higher ΦΔ values than the photochemical study (PDT). The sono-photochemical values were found to be 0.976 for 0 wt% GO, 0.961 for 0.25 wt% GO, 0.917 for 0.50 wt% GO, 0.910 for 1 wt% GO, 0.901 for 3 wt% GO, 0.890 for 5 wt% GO and 0.942 for 10 wt% GO, respectively. To the best of our knowledge, this is the first study of the use of phthalocyanines with GO by sonophotochemically as potential photosensitizers for sono-photodynamic therapy (SPDT) applications. According to obtained results, ZnPc (2) and its composites could be promise as good photosensitizers for both PDT and SPDT due to their very high singlet oxygen generation in both the photochemical study (PDT) and the sono-photochemical study (SPDT).

Graphical abstract

In this work, a novel nonperipherally zinc (II) phthalocyanine bearing 3-chloro-4-fluorophenoxy (2) was synthesized and its graphene oxide (GO)-based composites was prepared by noncovalently coating novel ZnPc (2) on the GO surface. Afterward, the therapeutic contribution of GO to these new sono/photosensitizers through sono/photochemical studies is presented for the first time.

Keywords: Phthalocyanine; Graphene oxide; Synthesis; Photosensitizer; Sono-photodynamic therapy

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-023-02892-3

 

Chemical Papers 77 (10) 5721–5731 (2023)

Saturday, April 27, 2024

IMPACT FACTOR 2021
2.146
SCImago Journal Rank 2021
0.365
SEARCH
Advanced
VOLUMES
European Symposium on Analytical Spectrometry ESAS 2022
© 2024 Chemical Papers