ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Solid suspension and gas dispersion in gas-solid-liquid agitated systems

Anna Kiełbus-Rąpała and Joanna Karcz

Department of Chemical Engineering, West Pomeranian University of Technology, al. Piastow 42, PL-71 065 Szczecin, Poland

 

E-mail: Joanna.Karcz@zut.edu.pl

Received: 1 May 2009  Revised: 6 August 2009  Accepted: 19 August 2009

Abstract: The aim of the research work was to investigate the effect of superficial gas velocity and solids concentration on the critical agitator speed, gas hold-up and averaged residence time of gas bubbles in an agitated gas-solid-liquid system. Experimental studies were conducted in a vessel of the inner diameter of 0.634 m. Different high-speed impellers: Rushton and Smith turbines, A 315 and HE 3 impellers, were used for agitation. The measurements were conducted in systems with different physical parameters of the continuous phase. Liquid phases were: distilled water (coalescing system) or aqueous solutions of NaCl (non-coalescing systems). The experiments were carried out at five different values of solids concentration and gas flow rate. Experimental analysis of the conditions of gas bubbles dispersion and particles suspension in the vessel with a flat bottom and four standard baffles showed that both gas and solid phases strongly affected the critical agitation speed necessary to produce a three-phase system. On the basis of experimental studies, the critical agitator speed for all agitators working in the gas-solid-liquid systems was found. An increase of superficial gas velocity caused a significant increase of the gas hold-up in both coalescing and non-coalescing three-phase systems. The type of the impeller strongly affected the parameters considered in this work. Low values of the critical impeller speed together with the relatively short average gas bubbles residence time tR in three phase systems were characteristic for the A 315 impeller. Radial flow Rushton and Smith turbines are high-energy consuming impellers but they enable to maintain longer gas bubbles residence time and to obtain higher values of the gas hold-up in the three-phase systems. Empirical correlations were proposed for the critical agitator speed, mean specific energy dissipated and the gas hold-up prediction. Its parameters were fitted using experimental data.

Keywords: agitation - gas-solid-liquid system - gas hold-up - critical impeller speed - power consumption

Full paper is available at www.springerlink.com.

DOI: 10.2478/s11696-009-0104-9

 

Chemical Papers 64 (2) 154–162 (2010)

Wednesday, November 13, 2019

IMPACT FACTOR 2018
1.246
SCImago Journal Rank 2018
0.274
SEARCH
Advanced
VOLUMES
International Conference on Coordination and Bioinorganic Chemistry
46th International Conference of SSCHE
© 2019 Chemical Papers