ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa

Miroslav Horník, Anna Šuňovská, Denisa Partelová, Martin Pipíška, and Jozef Augustín

Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia

 

E-mail: hornik@ucm.sk

Abstract: The sorption of thioflavine T (TT) and malachite green (MG) cationic synthetic dyes on dried biomass of green microalga (Chlorella pyrenoidosa) immobilised in polyurethane foam under continuous column systems conditions using spectrophotometric methods of detection was investigated. Data characterising the sorption of TT and MG on microalgal biomass immobilised in polyurethane foam in a column system from single (C 0 = 25 μmol dm−3) or binary equimolar (C 0 = 25 μmol dm−3) dye solutions in the form of breakthrough curves were well described by the Thomas (R 2 = 0.994–0.912), Yoon-Nelson (R 2 = 0.994–0.911), and Clark (R 2 = 0.993–0.911) models. Useful parameters characterising the sorption column system were obtained from these mathematical models. The Thomas model, in particular, provided the Q max (maximal sorption capacity in μmol g−1) parameter for characterisation of biosorbent and also for evaluation of competitive effects in the TT and MG dyes sorption. For the purposes of biomass regeneration, a one-step desorption of the dyes studied from the microalgal biomass in batch and continuous column systems was performed. Efficiency of TT desorption from microalgal biomass increased in the order: deionised H2O (50.7 %), 99.5 vol. % 1,4-dioxane (67 %), 20 mmol dm−3 NiCl2 (83 %), 96 vol. % ethanol (85 %), 0.1 mol dm−3 HCl (89 %), 1 mol dm−3 acetic acid (89 %). In the case of MG, the desorption efficiency increased in the order: deionised H2O (13 %), 20 mmol dm−3 NiCl2 (50 %), 0.1 mol dm−3 HCl (91 %), 99.5 vol. % 1,4-dioxane (94 %), 1 mol dm−3 acetic acid (99 %), 96 vol. % ethanol (> 99 %). The presence of carboxyl, phosphoryl, amino, and hydroxyl groups, the important functional groups for sorption of cationic xenobiotics, was also confirmed on the algae biomass surface by potentiometric titration and ProtoFit modelling software. The data obtained showed that the dried immobilised algae biomass could be used as a sorbent for removing toxic xenobiotics from liquid wastewaters or contaminated waters and also presenting the possibilities of mathematical modelling of sorption processes in continuous column systems in order to obtain important parameters for use in practice.

Keywords: synthetic dyes – sorption – desorption – Chlorella pyrenoidosa – continuous column system, modelling

Full paper is available at www.springerlink.com.

DOI: 10.2478/s11696-012-0235-2

 

Chemical Papers 67 (3) 254–264 (2013)

Friday, September 20, 2024

IMPACT FACTOR 2023
2.1
SCImago Journal Rank 2023
0.381
SEARCH
Advanced
VOLUMES
© 2024 Chemical Papers