Synthesis, Crystal Structure, and Magnetic Properties of a Novel Trinuclear Mixed-Valence Oxo-Bridged Manganese Complex Formed by Ligand-Substituted Reaction $\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{ClC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}$ (3-Methylpyridine) $\cdot \mathbf{0 . 5} \mathrm{CH}_{3} \mathrm{CN}$

B. YAN
Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
e-mail: byan@tongji.edu.cn

Received 22 March 2002

Abstract

A trinuclear mixed-valence oxo-centred manganese complex has been synthesized by carboxylic acid-substituted reaction in $\mathrm{CH}_{3} \mathrm{CN}$ solution $\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{ClC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}(3-$ Methylpyridine) $\cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$. It is a novel trinuclear Mn complex with mixed carboxylate bridge. The title complex crystallizes in the orthorhombic system, space group Pbca, with unit cell dimensions $a=22.548(5) \AA, b=23.070(5) \AA, c=24.321(3) \AA, V=12651(5) \AA^{3}, Z=4, R_{1}=$ 0.0755 , and $w R_{2}=0.1627$. The crystal structure shows an oxo-centred $\mathrm{Mn}_{3} \mathrm{O}$ unit with peripheral ligands provided by two different bridging carboxylic acids ligands (m-chlorobenzoic acid and m-methylbenzoic acid) and terminal 3 -methylpyridine group. The variable temperature magnetic susceptibility $(1.8-300 \mathrm{~K})$ for the title complex has been measured and interpreted in terms of the Kambe vector-coupling method and Van Vleck equation, and the values of J, J^{\prime}, and g are -8.42 $\mathrm{cm}^{-1},-10.37 \mathrm{~cm}^{-1}$, and $2.04 \mathrm{~cm}^{-1}$, respectively. This indicates a weak antiferromagnetic exchange coupling among the manganese ions for the complex.

In recent years, there has been a continuous interest in the study on trinuclear oxo-centred manganese complexes with mixed valence [$1-10$]. Many interesting aspects of these complexes were studied, such as magnetochemistry $[1-3]$, electron localization and delocalization [4], and the spin ground state variability $[5,6]$. A great number of the trinuclear oxo-bridged mixed-valence manganese complexes with the different bridge ligands and terminal ligands have been reported, all of them being oxo-bridged by only one kind of carboxylic acid.

In the present work, a novel trinuclear mixedvalence manganese complex with mixed bridged ligands was prepared by ligands-substituted reaction: $\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{ClC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}(3$-Methylpyridine) $\cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$. It is oxo-bridged by two kinds of carboxylic acids. The crystal structure and magnetic properties have been discussed in detail.

A summary of crystallographic data and refinement parameters is given in Table 1. Selected bond distances and angles are given in Tables 2 and 3. The title complex crystallizes in orthorhombic space group Pbca. The crystal structure is shown in Fig. 1. The Mn coordination geometry is a slightly distorted octahedron consisting of the central oxygen atom, four oxygen atoms from bridging carboxylate groups, and the nitrogen atom of a terminal 3methylpyridine. The central O atom is slightly dis-
placed from the plane of the Mn_{3} triangle. The bond lengths of $\operatorname{Mn}(1)-\mathrm{O}(11), \operatorname{Mn}(2)-\mathrm{O}(11), \mathrm{Mn}(3)-$ $\mathrm{O}(11)$ are $1.851(4) \AA, 1.952(5) \AA$, and $1.898(4) \AA$, respectively. The different bond lengths among the central oxygen atom and manganese atoms indicate that the complex is in a valence-trapped situation. The $\operatorname{Mn}(2)-\mathrm{O}(11)$ distance is the longest as expected for the lower oxidation state, so we can conclude that the $\operatorname{Mn}(2)$ is +2 manganese ion, and $\operatorname{Mn}(1)$ and $\operatorname{Mn}(3)$ are +3 manganese ions. The bond angles of $\mathrm{Mn}(1)-\mathrm{O}(11)-\mathrm{Mn}(2), \mathrm{Mn}(1)-$ $\mathrm{O}(11)-\mathrm{Mn}(3), \mathrm{Mn}(3)-\mathrm{O}(11)-\mathrm{Mn}(2)$ are $123.2(2)^{\circ}$, $114.0(2)^{\circ}, 122.8(2)^{\circ}$, respectively. The bond distances between the two $\operatorname{Mn}(\mathrm{III})$ ions $(\operatorname{Mn}(1), \mathrm{Mn}(3))$ and the four surrounding carboxylate oxygen atoms are slightly longer than that between the central $\operatorname{Mn}(2)$ ion and corresponding oxygen atoms. This is due to the fact that the $\operatorname{Mn}(\mathrm{III})\left(d^{4}\right)$ shows stronger JahnTeller effect than the $\operatorname{Mn}(\mathrm{II})\left(d^{5}\right)$. The overall structure is thus of the common "basic carboxylate" type seen for many other complexes [$1-5,7-10$]. It is worth pointing out that the complex contains two different bridged carboxylate ligands. The carboxylate bridges in positions 7, 9 are m-chlorobenzoate, and the carboxylate bridges in positions $2,3,4,5$ are m-methylbenzoate. Except the central oxygen atom, the bond lengths of Mn ions and oxygen atoms provided by m-chlorobenzoate are little shorter than

MANGANESE COMPLEX

Table 1. Crystal Data and Structure Refinement for the Title Complex

Complex	$\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{ClC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}(3$-Methylpyridine $) \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$
Formula	$\mathrm{C}_{65} \mathrm{H}_{58.5} \mathrm{~N}_{3.5} \mathrm{Cl}_{2} \mathrm{O}_{12} \mathrm{Mn}_{3}$
Relative molecular mass M_{r}	1316.375
Colour	Black
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Radiation	$\mathrm{Mo} K \alpha$
Crystal system	$P b c a$
Space group	Orthorhombic
Unit dimensions	$a=22.548(5) \AA$
	$b=23.070(5) \AA$
	$c=24.321(5) \AA$
Volume	$12651(5) \AA^{3}$
Z	4
Calculated density	$1.382 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	0.737 mm
$F(000)$	5424
Crystal size	$0.20 \mathrm{~mm} \times 0.20 \mathrm{~mm} \times 0.20 \mathrm{~mm}$
Θ range for data collection	1.52° to 26.95°
Reflections/collected/unique	$50156 / 11021[R($ int $)=0.1090]$
Completeness to $2 \Theta=26.95$	74.6%
Absorption correction	Psi-scan
Max. and min. transmission	0.91 and 0.72
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints $/$ parameters	$14021 / 59 / 828$
Goodness-of-fit on F^{2}	1.308
Final R indices $[I>2 \sigma(I)]$	$R 1=0.0755, w R 2=0.1627$
Extinction coefficient	$0.0003(3)$
Largest diff. peak and hole	$0.982 e \cdot \AA-3$ and $-0.434 e \cdot \neq \neq-3$

Table 2. 10^{4} Numerical Values of Atomic Coordinates and $10^{3} \AA^{2}$ of Equivalent Isotropic Displacement Parameters for the Title Complex

Atoms	x	y		z
	$y(\mathrm{eq})$			
$\mathrm{Mn}(1)$	$956(1)$	$147(1)$	$7089(1)$	$49(1)$
$\mathrm{Mn}(2)$	$285(1)$	$1104(1)$	$7915(1)$	$50(1)$
$\mathrm{Mn}(3)$	$-358(1)$	$-121(1)$	$7440(1)$	$62(1)$
$\mathrm{O}(11)$	$302(2)$	$387(2)$	$7489(2)$	$57(1)$
$\mathrm{N}(11)$	$235(2)$	$1886(2)$	$8449(3)$	$62(2)$
$\mathrm{C}(12)$	$20(3)$	$2395(3)$	$8228(4)$	$71(2)$
$\mathrm{C}(13)$	$-84(3)$	$2874(3)$	$8567(4)$	$78(3)$
$\mathrm{C}(14)$	$27(4)$	$2838(3)$	$9134(4)$	$90(3)$
$\mathrm{C}(15)$	$251(3)$	$2330(3)$	$9370(4)$	$78(2)$
$\mathrm{C}(16)$	$349(3)$	$1872(3)$	$9006(3)$	$65(2)$
$\mathrm{O}(21)$	$1031(2)$	$989(2)$	$8335(2)$	$80(2)$
$\mathrm{O}(22)$	$1494(2)$	$389(2)$	$7757(3)$	$79(2)$
$\mathrm{C}(20)$	$1445(3)$	$686(3)$	$8203(3)$	$59(2)$
$\mathrm{C}(21)$	$1905(3)$	$705(4)$	$8619(4)$	$81(3)$
$\mathrm{C}(22)$	$2002(4)$	$1179(5)$	$8969(4)$	$117(4)$
$\mathrm{C}(23)$	$2483(5)$	$1131(6)$	$9339(4)$	$171(7)$
$\mathrm{C}(24)$	$2744(5)$	$582(8)$	$9285(9)$	$330(2)$
$\mathrm{C}(25)$	$2554(12)$	$57(8)$	$9082(10)$	$550(5)$
$\mathrm{C}(26)$	$2243(4)$	$203(6)$	$8616(6)$	$151(5)$
$\mathrm{O}(31)$	$675(2)$	$1640(2)$	$7308(2)$	$68(1)$
$\mathrm{O}(32)$	$1072(2)$	$987(2)$	$6712(2)$	$68(1)$
$\mathrm{C}(30)$	$963(3)$	$1505(3)$	$6879(3)$	$54(2)$
$\mathrm{C}(31)$	$1227(3)$	$1999(3)$	$6550(3)$	$58(2)$
$\mathrm{C}(32)$	$1161(3)$	$2580(3)$	$6685(4)$	$87(3)$
$\mathrm{C}(33)$	$1429(4)$	$3009(3)$	$6347(5)$	$148(6)$
$\mathrm{C}(34)$	$1718(4)$	$2782(7)$	$5889(5)$	$190(10)$
$\mathrm{C}(35)$	$1839(7)$	$2230(6)$	$5722(6)$	$450(3)$
$\mathrm{C}(36)$	$1540(3)$	$1848(4)$	$6074(4)$	$85(3)$

Table 2. (Continued)

Atoms	x	y		z		$U(\mathrm{eq})$
	$-496(2)$	$-120(3)$	$8314(3)$	$98(2)$		
$\mathrm{O}(42)$	$-100(2)$	$711(2)$	$8624(2)$	$82(2)$		
$\mathrm{C}(40)$	$-382(3)$	$246(4)$	$8699(4)$	$75(3)$		
$\mathrm{C}(41)$	$-573(3)$	$124(5)$	$9292(5)$	$100(4)$		
$\mathrm{C}(42)$	$-848(4)$	$-422(5)$	$9388(5)$	$163(7)$		
$\mathrm{C}(43)$	$-959(9)$	$-534(8)$	$9927(6)$	$470(4)$		
$\mathrm{C}(44)$	$-984(7)$	$-111(6)$	$10325(6)$	$261(17)$		
$\mathrm{C}(45)$	$-691(4)$	$408(7)$	$10246(5)$	$198(9)$		
$\mathrm{C}(46)$	$-521(4)$	$535(6)$	$9707(5)$	$117(4)$		
$\mathrm{O}(51)$	$102(2)$	$-927(2)$	$7553(3)$	$90(2)$		
$\mathrm{O}(52)$	$976(2)$	$-690(2)$	$7474(2)$	$75(2)$		
$\mathrm{C}(50)$	$596(3)$	$-1013(3)$	$7659(3)$	$57(2)$		
$\mathrm{C}(51)$	$739(3)$	$-1527(3)$	$8008(3)$	$66(2)$		
$\mathrm{C}(52)$	$330(4)$	$-1927(3)$	$8184(4)$	$80(2)$		
$\mathrm{C}(53)$	$450(5)$	$-2409(4)$	$8497(4)$	$106(3)$		
$\mathrm{C}(54)$	$1001(5)$	$-2498(4)$	$8698(5)$	$116(4)$		
$\mathrm{C}(55)$	$1402(4)$	$-2096(4)$	$8540(4)$	$104(3)$		
$\mathrm{C}(56)$	$1290(3)$	$-1608(4)$	$8212(4)$	$89(3)$		
$\mathrm{N}(61)$	$1677(2)$	$-94(2)$	$6612(3)$	$65(2)$		
$\mathrm{C}(62)$	$1704(3)$	$-604(3)$	$6331(4)$	$79(3)$		
$\mathrm{C}(63)$	$2134(4)$	$-741(4)$	$5961(4)$	$93(3)$		
$\mathrm{C}(64)$	$2548(4)$	$-315(4)$	$5893(4)$	$95(3)$		
$\mathrm{C}(65)$	$2540(3)$	$201(3)$	$6177(4)$	$76(2)$		
$\mathrm{C}(66)$	$2105(3)$	$301(3)$	$6546(3)$	$71(2)$		
$\mathrm{O}(71)$	$-925(2)$	$585(2)$	$7361(3)$	$84(2)$		
$\mathrm{O}(72)$	$-463(2)$	$1385(2)$	$7612(2)$	$78(2)$		
$\mathrm{C}(70)$	$-890(3)$	$1112(3)$	$7497(3)$	$60(2)$		
$\mathrm{C}(71)$	$-1413(2)$	$1469(3)$	$7549(3)$	$59(2)$		
$\mathrm{C}(72)$	$-1912(3)$	$1221(3)$	$7357(4)$	$83(3)$		
$\mathrm{C}(73)$	$-2400(3)$	$1553(3)$	$7458(4)$	$95(3)$		

Table 2. (Continued)

Atoms	x	y	z	$U(\mathrm{eq})$
$\mathrm{C}(74)$	$-2391(3)$	$2081(4)$	$7714(4)$	$85(3)$
$\mathrm{C}(75)$	$-1889(3)$	$2331(3)$	$7889(4)$	$74(2)$
$\mathrm{C}(76)$	$-1406(3)$	$2005(3)$	$7804(3)$	$68(2)$
$\mathrm{N}(81)$	$-1080(2)$	$-688(3)$	$7377(3)$	$78(2)$
$\mathrm{C}(82)$	$-1571(3)$	$-509(4)$	$7633(4)$	$84(3)$
$\mathrm{C}(83)$	$-2044(3)$	$-854(4)$	$7547(4)$	$98(3)$
$\mathrm{C}(84)$	$-2022(3)$	$-1344(4)$	$7231(4)$	$92(3)$
$\mathrm{C}(85)$	$-1540(3)$	$-1541(3)$	$6967(4)$	$77(2)$
$\mathrm{C}(86)$	$-1079(3)$	$-1187(3)$	$7066(3)$	$72(2)$
$\mathrm{O}(91)$	$-319(2)$	$-237(2)$	$6580(3)$	$79(2)$
$\mathrm{O}(92)$	$568(2)$	$-174(2)$	$6355(2)$	$65(1)$
$\mathrm{C}(90)$	$80(3)$	$-306(3)$	$6232(3)$	$59(2)$
$\mathrm{C}(91)$	$-40(3)$	$-554(3)$	$5654(4)$	$66(2)$
$\mathrm{C}(92)$	$-605(4)$	$-675(3)$	$5508(4)$	$98(3)$
$\mathrm{C}(93)$	$-713(6)$	$-883(5)$	$4981(5)$	$123(4)$
$\mathrm{C}(94)$	$-308(6)$	$-997(4)$	$4580(5)$	$118(4)$
$\mathrm{C}(95)$	$257(5)$	$-881(4)$	$4733(4)$	$106(3)$
$\mathrm{C}(96)$	$386(4)$	$-655(3)$	$5261(3)$	$72(2)$
$\mathrm{C}(17)$	$405(5)$	$2275(5)$	$10023(5)$	$122(4)$
$\mathrm{C}(27)$	$3088(6)$	$-304(9)$	$9184(13)$	$173(10)$
$\mathrm{C}(37)$	$2109(4)$	$2255(4)$	$5144(4)$	$42(2)$
$\mathrm{C}(47)$	$-759(11)$	$764(15)$	$10780(16)$	$61(6)$
$\mathrm{C}(57)$	$2014(13)$	$-2281(12)$	$8733(14)$	$69(7)$
$\mathrm{C}(67)$	$2979(4)$	$672(4)$	$6098(5)$	$88(3)$
$\mathrm{Cl}(7)$	$-1881(1)$	$2998(1)$	$8213(2)$	$138(1)$
$\mathrm{C}(87)$	$-1499(4)$	$-2095(4)$	$6623(5)$	$89(4)$
$\mathrm{C}(97)$	$615(6)$	$-991(14)$	$4206(13)$	$44(4)$
$\mathrm{Cl}(9)$	$827(7)$	$-964(16)$	$4230(14)$	$52(4)$
$\mathrm{O}(1)$	$-1443(7)$	$3101(6)$	$9734(7)$	$136(5)$
$\mathrm{C}(1)$	$-1360(6)$	$2631(5)$	$9672(7)$	$65(4)$
$\mathrm{C}(2)$	$-1257(6)$	$2002(5)$	$9583(8)$	$85(5)$

$U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
those of Mn ions and oxygen atoms provided by m-methylbenzoate. The reactive ability, coordination properties, and structure of the two carboxylic acids are very similar, which leads to the easy substitution. Fig. 2 shows the packing unit cell diagram of the title complex.

Variable temperature magnetic susceptibility data for the title complex were recorded for higher temperature to 1.8 K (Fig. 3). The value of $\chi_{\mathrm{m}} T$ is 855 $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 300 K and decreases with decreasing temperature, reaching $1.72 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 1.8 K. This behaviour obviously indicates a weak antiferromagnetic coupling interaction between the three manganese ions. The spin Hamiltonian was $H=$ $-2\left[J_{12}\left(S_{1} S_{2}\right)+J_{23}\left(S_{2} S_{3}\right)+J_{31}\left(S_{3} S_{1}\right)\right]$ used to fit the observed results, assuming the two Mn (III) ions to be equivalent, then here are two exchange parameters, $J=J_{12}=J_{32}$ and $J^{\prime}=J_{13}$ for the $\operatorname{Mn}(\mathrm{III})-\mathrm{Mn}(\mathrm{III})$ interaction. On the basis of this model, Hendrickson et al. have given a detailed mathematical expression [8] of the molar paramagnetic susceptibility for such trinuclear complex. The magnetic susceptibility data for the complex provided the best fit to the theoretical

Table 3. Numerical Values of Selected Bond Distances $/ \AA$ and

$\mathrm{Mn}(1)-\mathrm{O}(1)$	1.851(4)
$\mathrm{Mn}(1)-\mathrm{N}(61)$	2.073(6)
$\mathrm{Mn}(1)-\mathrm{O}(22)$	2.103(6)
$\mathrm{Mn}(1)-\mathrm{O}(92)$	2.102(5)
$\mathrm{Mn}(1)-\mathrm{O}(52)$	2.145(5)
$\mathrm{Mn}(1)-\mathrm{O}(32)$	2.160(5)
$\mathrm{Mn}(2)-\mathrm{O}(72)$	1.951(4)
$\mathrm{Mn}(2)-\mathrm{O}(11)$	1.952(5)
$\mathrm{Mn}(2)-\mathrm{O}(21)$	1.987(5)
$\mathrm{Mn}(2)-\mathrm{O}(31)$	2.116(5)
$\mathrm{Mn}(2)-\mathrm{O}(42)$	2.135(5)
$\mathrm{Mn}(2)-\mathrm{N}(11)$	2.227(6)
$\mathrm{Mn}(3)-\mathrm{O}(11)$	1.898(4)
$\mathrm{Mn}(3)-\mathrm{O}(71)$	2.079(5)
$\mathrm{Mn}(3)-\mathrm{N}(81)$	2.093(6)
$\mathrm{Mn}(3)-\mathrm{O}(91)$	2.111(6)
$\mathrm{Mn}(3)-\mathrm{O}(51)$	2.147(5)
$\mathrm{Mn}(3)-\mathrm{O}(41)$	2.147(8)
$\mathrm{Mn}(1)-\mathrm{Mn}(3)$	3.144(1)
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{N}(61)$	177.2(2)
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{O}(22)$	88.5(2)
$\mathrm{N}(61)-\mathrm{Mn}(1)-\mathrm{O}(22)$	92.9(2)
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{O}(92)$	102.6(2)
$\mathrm{O}(92)-\mathrm{Mn}(1)-\mathrm{N}(61)$	76.0(2)
$\mathrm{O}(22)-\mathrm{Mn}(1)-\mathrm{O}(92)$	168.7(2)
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{O}(52)$	93.3(2)
$\mathrm{N}(61)-\mathrm{Mn}(1)-\mathrm{O}(52)$	89.3(2)
$\mathrm{O}(22)-\mathrm{Mn}(1)-\mathrm{O}(52)$	83.7(2)
$\mathrm{O}(92)-\mathrm{Mn}(1)-\mathrm{O}(32)$	93.6(2)
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{O}(32)$	84.6(2)
$\mathrm{O}(22)-\mathrm{Mn}(1)-\mathrm{O}(32)$	91.1(2)
$\mathrm{O}(92)-\mathrm{Mn}(1)-\mathrm{O}(32)$	90.3(2)
$\mathrm{O}(52)-\mathrm{Mn}(1)-\mathrm{O}(32)$	171.8(2)
$\mathrm{O}(11)-\mathrm{Mn}(2)-\mathrm{O}(31)$	96.7(2)
$\mathrm{O}(11)-\mathrm{Mn}(2)-\mathrm{O}(21)$	98.2(3)
$\mathrm{O}(72)-\mathrm{Mn}(2)-\mathrm{O}(11)$	95.6(2)
$\mathrm{O}(11)-\mathrm{Mn}(2)-\mathrm{N}(11)$	175.8(2)
$\mathrm{O}(21)-\mathrm{Mn}(2)-\mathrm{N}(11)$	81.4(2)
$\mathrm{O}(72)-\mathrm{Mn}(2)-\mathrm{N}(11)$	84.7(2)
$\mathrm{N}(11)-\mathrm{Mn}(2)-\mathrm{O}(31)$	87.5(2)
$\mathrm{N}(11)-\mathrm{Mn}(2)-\mathrm{O}(42)$	81.4(2)
$\mathrm{O}(21)-\mathrm{Mn}(2)-\mathrm{O}(72)$	166.1(2)
$\mathrm{O}(72)-\mathrm{Mn}(2)-\mathrm{O}(31)$	84.4(2)
$\mathrm{O}(21)-\mathrm{Mn}(2)-\mathrm{O}(31)$	94.9(2)
$\mathrm{O}(72)-\mathrm{Mn}(2)-\mathrm{O}(42)$	95.4(2)
$\mathrm{O}(11)-\mathrm{Mn}(2)-\mathrm{O}(42)$	94.4(2)
$\mathrm{O}(21)-\mathrm{Mn}(2)-\mathrm{O}(42)$	82.6(2)
$\mathrm{O}(31)-\mathrm{Mn}(2)-\mathrm{O}(42)$	168.9(2)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(71)$	90.2(2)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(91)$	96.2(2)
$\mathrm{O}(71)-\mathrm{Mn}(3)-\mathrm{O}(91)$	91.9(2)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(51)$	98.5(2)
$\mathrm{O}(71)-\mathrm{Mn}(3)-\mathrm{O}(51)$	170.8(2)
$\mathrm{O}(91)-\mathrm{Mn}(3)-\mathrm{O}(51)$	89.8(2)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(41)$	93.0(2)
$\mathrm{O}(71)-\mathrm{Mn}(3)-\mathrm{O}(41)$	90.1(2)
$\mathrm{O}(51)-\mathrm{Mn}(3)-\mathrm{O}(41)$	86.8(2)
$\mathrm{O}(91)-\mathrm{Mn}(3)-\mathrm{O}(41)$	170.6(2)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{N}(81)$	179.2(2)
$\mathrm{O}(71)-\mathrm{Mn}(3)-\mathrm{N}(81)$	90.2(2)
$\mathrm{O}(91)-\mathrm{Mn}(3)-\mathrm{N}(81)$	83.1(2)
$\mathrm{O}(51)-\mathrm{Mn}(3)-\mathrm{N}(81)$	81.0(2)
$\mathrm{O}(41)-\mathrm{Mn}(3)-\mathrm{N}(81)$	87.8(2)
$\mathrm{Mn}(1)-\mathrm{O}(11)-\mathrm{Mn}(2)$	123.2(2)
$\mathrm{Mn}(1)-\mathrm{O}(11)-\mathrm{Mn}(3)$	114.0(2)
$\mathrm{Mn}(2)-\mathrm{O}(11)-\mathrm{Mn}(3)$	122.8(2)

Fig. 1. Crystal structure of the title complex (hydrogen atoms are omitted for clarity).
equation (cf. Fig. 3). The fitting parameters are obtained: $J=-8.42 \mathrm{~cm}^{-1}, J^{\prime}=-10.37 \mathrm{~cm}^{-1}, g=2.07$, and $J / J^{\prime}=0.812$.

EXPERIMENTAL

Appropriate care was taken in the use of organic permanganates and perchlorate. All manipulations were performed under aerobic conditions. All the reagent grade solvents were used without further purification. A yield was calculated from the stoichiometric reaction. $\mathrm{NBu}_{4} \mathrm{MnO}_{4}$ was synthesized according to Ref. [11].

Contents of C, H, and N were found by Erba 1106 elemental analyzer. Infrared spectra (400-4000 cm^{-1}) were recorded from KBr pellets in a Nicolet 7199B spectrophotometer. Magnetic susceptibility measurements were carried out on a Quantum Design Maglab System 2000 Squid magnetometer in the temperature range $1.8-300 \mathrm{~K}$ in an applied field of 10 T . Magnetization measurements were carried out with the Quantum Design magnetometer. Pascal's constants were used to estimate the diamagnetic cor-
rections. The fit was carried out by using the Nonlinear Regression Analysis Program, Version 3.0.

Diffraction data for a crystal with dimensions 0.20 $\mathrm{mm} \times 0.20 \mathrm{~mm} \times 0.20 \mathrm{~mm}$ were obtained from the measurement of graphite-monochromated MoK α radiation $(\lambda=0.71073 \AA)$ on a CCD face probe four-circle diffractometer, and were collected by the $\omega-2 \Theta$ scan technique. The structures were solved by direct methods. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares methods. The hydrogen atoms were added geometrically and not refined. All calculations were performed using SHELXS-97 and SHELXL-97.

Complex

$\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{~g} ; 8.15 \mathrm{mmol})$ and m chlorobenzoic acid ($9.64 \mathrm{~g} ; 61.4 \mathrm{mmol}$) were dissolved in mixed solvents of absolute ethanol and 3methylpyridine, then 1.15 mmol of solid $\mathrm{NBu}_{4} \mathrm{MnO}_{4}$ was added in small portions. During stirring, the brown-green precipitate was formed. The precipitate was filtered off, washed with cold ethanol and ether,

Fig. 2. Packing unit cell diagram of the title complex.

Fig. 3. Temperature dependence of magnetic susceptibility for the title complex. The solid line results from a fit of the data to the appropriate theoretical equation.
and dried in vacuum. Layering the solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using hexane gave small microcrystals of the products after several days. Yield 45% based on Mn. For $\mathrm{C}_{43} \mathrm{H}_{35.5} \mathrm{~N}_{2.5} \mathrm{Cl}_{6} \mathrm{O}_{10} \mathrm{Mn}_{3} w_{\mathrm{i}}$ (calc.)/\%: C 50.12, H 3.18, N 2.57; w_{i} (found)/\%: C 50.12, H 5.27, N 2.69. FTIR (KBr): $\nu_{\mathrm{as}}(\mathrm{COO}) 1564 \mathrm{~cm}^{-1}, \nu_{\mathrm{s}}(\mathrm{COO}) 1387 \mathrm{~cm}^{-1}$.

The above trinuclear complex ($2.73 \mathrm{~g} ; 2.0 \mathrm{mmol}$) was dissolved into mixed solvents of acetonitrile and 3 -methylpyridine ($40 \mathrm{~cm}^{3}$), excess of m-methylbenzoic acid was added and stirred overnight. After filtration, the black filtrate was placed for about one month and the black blank crystal was formed. Yield 22% based on Mn. For $\mathrm{C}_{65} \mathrm{H}_{58.5} \mathrm{~N}_{3.5} \mathrm{Cl}_{2} \mathrm{O}_{12} \mathrm{Mn}_{3} w_{\mathrm{i}}$ (calc.)/\%: C, 59.25, H 4.44, N 3.72; w_{i} (found)/\%: C 59.39, H 4.27, N 3.77. FTIR (KBr): $\nu_{\text {as }}(\mathrm{COO}) 1595 \mathrm{~cm}^{-1}, \nu_{\mathrm{s}}(\mathrm{COO})$ $1394 \mathrm{~cm}^{-1}, 1390 \mathrm{~cm}^{-1}$.

Acknowledgements. The author is grateful to Start Science Fund of Tongji University.

REFERENCES

1. Baikie, A. R. E., Hursthouse, M. B., New, D. B., and Thornton, P., J. Chem. Soc., Chem. Commun. 1978, 62.
2. Zhang, S. W., Wei, Y. G., Liu, Q., and Shao, M. C., Polyhedron 15, 1014 (1996).
3. An, J., Chen, Z. D., Bian, J., Jin, X. L., Wang, S. X., and Xu, G. X., Inorg. Chim. Acta 287, 82 (1999).
4. Wu, R. W., Poyraz, M., Sowrey, F. E., Anson, C. E., Wocadle, S., Powell, A. K., Jayasooriya, U. A., Cannon, R. D., Nakamoto, T., Katada, M., and Sano, H., Inorg. Chem. 37, 1913 (1998).
5. Ribas, J., Albsela, B., Stoeckli-Evans, H., and Christou, G., Inorg. Chem. 36, 2352 (1997).
6. McCusker, J. K., Jiang, H. G., Wang, S. Y., Christou, G., and Hendrickson, D. N., Inorg. Chem. 31, 1874 (1992).
7. Baikie, A. R. E., Hursthouse, M. B., New, L., Thornton, P., and White, R. C., J. Chem. Soc., Chem. Commun. 1984, 684.
8. Vincent, J. B., Chang, H. R., Folting, K., Huffman, H. C., Christou, G., and Hendrickson, D. N., J. Am. Chem. Soc. 109, 5703 (1987).
9. Gerbelen, N. V., Timtso, G. A., Manole, O. S., Struchkov, Yu. T., Batsanov, A. S., and Grebenzo, S. V., Koord. Khim. 20, 357 (1994).
10. Xu, H., Li, J. Y., Liu, Q., Xu, Z., You, X. Z., and Yu, K. B., Chin. J. Struct. Chem. 13, 272 (1994).
11. Sala, T. and Sargent, M. V., J. Chem. Soc., Chem. Commun. 1987, 253.
