Characterization of Stable Nitroxide Radicals on the Basis of Adduct Chromophore-Hindered Amine Utilizing EPR Spectroscopy in Solution and Polymer Matrix

Ľ. BÚCIOVÁ, A. BÚCSI, P. HRDLOVIČ, and Š. CHMELA

Polymer Institute, Slovak Academy of Sciences,
SK-842 36 Bratislava
e-mail: upolhrdl@savba.sk

Received 27 September 2001

EPR spectra of 17 stable nitroxide radicals on the basis of 4-substituted 1-oxyl-2,2,6,6-tetramethylpiperidine in solution (benzene) and in polymer matrices (PVC, iPP) were studied. Four derivatives containing pyrene and five with naphthalene as chromophore were used. They differ from each other by the length and type of bridge, connecting covalently the piperidine radical to chromophore. Two biradicals containing phosphorus and sulfur and one triradical containing phosphorus were investigated.

In solution EPR spectra of probes containing one nitroxyl group provide triplet with line of equal intensity. The biradicals spectra were quintets and the triradical was septet. The purity of the prepared compounds was determined from the integrals of EPR spectra.

In polymer matrices at room temperature the EPR spectra of monoradicals derived from hindered amines provide anisotropic spectra, typical for nitroxyl radicals in solid phase.

Spin probes are widely used in polymer research. Frequently used probes are nitroxy radicals. They are very stable in solid phase as well as in solutions. As class of stable organic radicals they were discovered for the first time in 1956 [1, 2]. Since that time significant attention has been paid to the study of their synthesis and their properties [3—5]. In the case of the most stable nitroxyl radicals, the NO group is bonded to a tertiary carbon, for example di-tert-butyl nitroxide, 2,2-dimethylxazoline derivatives, pyrrole, and piperidine nitroxides. Under conditions that the probes can freely rotate the spectrum of nitroxide provides a triplet with lines of equal intensity. This is a result of interaction of free radical with the magnetic moment of nitrogen nucleus ($I = 1$).

For investigation of interaction of low-molecular organic nitroxides with polymer matrix the technique of spin probes is very often used. This method enables to study mobility of probe in microscopic environment utilizing the EPR technique. Some nitroxides easily diffuse into polymer [6]. It was found that these radicals are mainly localized in amorphous phase of polymer [7]. Kusumoto et al. [8] studied the motions of polymer chains on the surface of growing PE monocrystal in relation to the structure of surface. At low temperature the spectrum is anisotropic and consists of wide lines suggesting that the free rotation of the probe is hindered. With increasing temperature small splitting occurs because the probe starts freely rotate, which causes changes in the hyperfine structure of the spectrum. Above certain temperature a triplet occurs with equal-line intensities. The technique of spin probes is utilized for research of Overhauser’s effect, e.g. dipole–dipole interactions of free radicals with electrons and protons, etc.

In this paper we describe and compare the EPR spectra of 17 different nitroxyl radicals of 4-substituted 1-oxo-2,2,6,6-tetramethylpiperidines in solution and some of them in polymer matrix. The spectra of mono-, di-, and triradicals are compared in solution as well. Majority of the compounds $I—XV$ are combined adducts of chromophore with the sterically hindered amine (4-substituted 1-oxo-2,2,6,6-tetramethylpiperidines) that have been utilized as fluorescence probes [9—14, 22]. They have been used as well as spin probes [19—21]. The main goal is to investigate the influence of environment on the shape of EPR spectra in fluid solutions and solid matrices as well as the influence of the size and the type of substituent and their linkage with paramagnetic centre in the ground state. Another aim of the paper is to quantify the presence of probes in order to judge the efficiency of oxidation of parent amines.

EXPERIMENTAL

A series of 17 different probes of nitroxide radicals was measured. Their structures are shown...
Formula 1

XI

XII

XIII

XIV

XV

XVI

XVII

NITROXIDE RADICALS IN MATRIX
in Formula 1. The preparation of 1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl ester of 4-oxo-4-(pyren-1-yl)-
butanoic acid (I), m.p. = 95—99°C, 1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl ester of (pyren-1-yl)acetic acid (II), product in oil form, 1-oxyl-2,2,6,6-
tetramethylpiperid-4-yl ester of pyren-1-carboxylic acid (IV), m.p. = 174—176°C was described in paper [9]. Prepara-
tion of 1-oxyl-2,2,6,6-tetramethylpiperid-4-yl ester of 4-(pyren-1-yl)butanoic acid (II) (m.p. = 110—
112°C) was described in paper [10]. Preparation of 1-
oxyl-2,2,6,6-tetramethylpiperid-4-yl ester of (naphth-
1-yl)acetic acid (V), m.p. = 41—42°C and 1-oxyl-
2,2,6,6-tetramethylpiperidin-4-olacetate (VIII), m.p. = 71—72°C, 1-oxyl-2,2,6,6-tetramethyl-
piperid-4-yl acetate (VIII), m.p. = 47—51°C, N-(1-
oxyl-2,2,6,6-tetramethylpiperidin-4-yl)acetamide (X), m.p. = 147—149°C was described in [11]. Synthesis of 1-oxyl-2,2,6,6-tetramethylpiperidin-4-ol (VII), m.p. = 98—101°C was described in paper [9]. Preparation of 1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl ben-
zoate (IX), m.p. = 91—92°C and 1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl stearate (XI), m.p. = 37—
39°C was described in [13], of N-(1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl)-1,8-naphthylimide (XII), m.p. = 227—229°C in [14]. Probes XIII (1-oxyl-
2,2,6,6-tetramethylpiperidin-4-yl)-1-naphthylamidine, m.p. = 193—196°C and XIV (1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl)-2-(1-naphthyl)acetamide, m.p. = 144—147°C were prepared according to [11]. Probes XV 2,6-di(tert-butyl)-4-methylphenyl di-(1-oxyl-2,2,6,6-
tetramethylpiperidin-4-yl) sulfoxide, m.p. = 120—
122°C, XVI di-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl) phosphite, m.p. = 95—
118°C were prepared at the Institute of Organic Chemistry, Technical University, Dresden in labora-
tory of Dr. W. Habicher. Biradical XVI and triradical XVII have been already characterized in [11, 21]. 1-Oxyl-2,2,6,6-tetramethylpiperidin-4-ol (probe VII) was used as internal standard as the best-defined rad-
ical on the basis of available data from literature.

For EPR measurements in solution we used ben-
zen (Lachema, Brno, Czech Republic, UV spec-
troscopy grade) as solvent. There were two reasons for the choice of this solvent. First one is a good sol-
ubility of all probes in it and the second one is that its dipole moment equal to zero makes it very suitable for EPR measurement.

Polymer films doped with probes were prepared by casting (when polymer is soluble) from THF solution or by hot pressing of impregnated polymer powder. Films of PVC (Neralit 628, Spolana, Neratovice, a.s., Czech Republic, M_1 = 1.11 × 10^5) were prepared by casting 0.02—2 mg of probe in 1 cm³ tetrahydrofuran solution of polymer (5 g/100 cm³) on a glass plate (28 mm × 35 mm). Isotactic polypropylene (iPP) films were prepared by hot pressing of impregnated powder (200°C for 1 min) in two molalities of probe 0.002 mol kg⁻¹ and 0.02 mol kg⁻¹. Probe was dissolved in 10 cm³ of chloroform and added to 1 g of nonstabilized powder (Daplen, PCD Polymere, Schwechat, Austria). After 24 h of impregnation solvent was removed, pow-
der was dried and hot-pressed.

EPR spectra were measured with X-band spectrom-
trometer E-4 Varian (USA) interfaced on PC with program Symphonia Bruker.

RESULTS AND DISCUSSION

Quantitative measurements were made in benzene solutions, c = 1 × 10^-3 mol dm⁻³ (exact concentra-
tions are listed in Table 1). Integrals of EPR spectra for the studied materials, concentrations of used solutions, integrals recalculated to unique concentra-
tion and relative concentration according to the internal standard (probe VII) are summarized in Table 1. Theoretical values of relative concentrations of probes I—XIV are 100, for probes XV and XVI 200, and for XVII 300. The values of integrals are proportional to the number of radicals, so the relative concentration – c₁ provides information about the amount of radicals in the probes. We assume that the relative concentra-
tion of radicals in standard is 100 %. Assuming that preparation of probe solutions was done with certain error (probe weighting, dilution), a value of relative concentra-
tions around 90 % proves the high purity of the given probe. On the other hand, lower value (74 % for probe V) suggests that probably the probe was not well purified by column chromatography and contains some impurity (possibly the starting parent amine).

EPR spectra of probes I—XIV are triplets with equal-line intensities. Typical spectrum of monoradical is shown in Fig. 1. The hyperfine splitting is the result of interaction of the unpaired electron with the nucleus ^14_N (I = 1) and the number of lines is de-
termined according to the formula 2nI + 1 (where n is the number of nitrogen atoms). The measured line width was 0.4—0.45 mT and the hyperfine splitting constants were for the most cases 1.53 mT. This value slightly depends on the structure of radicals and on

![Fig. 1. EPR spectra of monoradical probe III in benzene solution before —— and after deaeration ———. Concentration of probe is 9.89 × 10^-4 g dm⁻³.](image)
sured spectra of compound comparison of the simulated and experimentally measured ones (1:1.8:2.8:1.8:1). The integral ratio of peaks integrals 1:3:6:7:6:3:1. In the case of the probe spectrum of probe with two equivalent N atoms is 1:2:3:2:1. The theoretical ratio of peaks integrals for these represents quintets (5 peaks, n = 2) and the theoretical ratio of peaks integrals is 1:3:6:7:6:3:1. In the case of the probe XVI the experimentally measured integral ratios are close to the theoretical values (1:1.8:2.8:1.8:1). The comparison of the simulated and experimentally measured spectra of compound XVI (Fig. 4) shows a good agreement, too. On the other hand, in the case of probes XV and XVII (Fig. 5) the integrals of the polarisation of the solvent and in benzene these values are in the range 1.46—1.7 mT for different nitroxyl radicals [15—18].

The spectra of probes XV and XVI (biradicals) represent quintets (5 peaks, n = 2) (Figs. 2 and 3). The theoretical ratio of peaks integrals for these probes with two equivalent N atoms is 1:2:3:2:1. The spectrum of probe XVII (triradical) is septet (seven peaks, n = 3) and the theoretical ratio of peaks integrals is 1:3:6:7:6:3:1. In the case of the probe XVI the experimentally measured integral ratios are close to the theoretical values (1:1.8:2.8:1.8:1). The comparison of the simulated and experimentally measured spectra of compound XVI (Fig. 4) shows a good agreement, too. On the other hand, in the case of probes XV and XVII (Fig. 5) the integrals of peaks differ significantly from the theoretically predicted ones (probe XV – 1:1.8:2.4:1.7:1, probe XVII – 1:0.9:1.6:2.2:1.5:0.9:1). The reason for this difference is probably the fact that the paramagnetic centres are not equivalent and/or due to the presence of paramagnetic phosphorus. The number of lines corresponds well to the theoretically predicted ones in all cases.

The influence of dissolved oxygen on the EPR spectra is a well-known phenomenon. Due to the paramagnetism of oxygen molecules, their collisions with the free radical centres contribute to the magnetic relaxation of radicals and so to the increasing of EPR line width. The measure of line widths is proportional to the frequency of the collisions. Removing the oxygen
Fig. 4. EPR spectra of biradical probe XVI in benzene: experimental spectrum —— and simulated spectrum ■ ■ ■ ■ ■.

Fig. 5. EPR spectra of triradical probe XVII in benzene solution before —— and after deaeration – – –. Concentration of probe is 9.89×10^{-4} g dm$^{-3}$.

Fig. 6. EPR spectrum of probe V in PVC matrix at molality $m = 2 \times 10^{-3}$ mol kg$^{-1}$ —— and $m = 2 \times 10^{-2}$ mol kg$^{-1}$ – – –.
NITROXIDE RADICALS IN MATRIX

Fig. 7. EPR spectra of probe VI in iPP matrix at molality $m = 2 \times 10^{-3} \text{ mol kg}^{-1}$ — and $m = 2 \times 10^{-2} \text{ mol kg}^{-1}$ — determined in PVC (Fig. 6) and probe VI measured in iPP (Fig. 7) showed that the polarity of polymer matrix does not affect the shape of the spectra. The nitroxide radicals are chaotically oriented in the probe and the spectrum is the superposition of spectra of all possible radicals orientations in the magnetic field [15].

From the EPR measurements of dissolved probes and their comparison with an internal standard, we determined the purity of the prepared probes containing nitroxide radicals.

CONCLUSION

EPR spectra of 17 stable nitroxide radicals based on 4-substituted 1-oxyl-2,2,6,6-tetramethylpiperidine were measured. Four derivatives containing pyrene as chromophore and five other derivatives with naphthalene chromophore were used. Different types of bridge, connecting covalently the 4-substituted 1-oxyl-2,2,6,6-tetramethylpiperidine radical to chromophore were used.

In fact, no influence concerning the size of the chromophore and type of linkage on EPR spectra was observed in solution as well as in polymer matrix. Two other biradicals containing phosphorus and sulfur and one triradical containing phosphorus were investigated.

EPR spectra of probes containing one nitroxide radical provide triplet with line of equal intensity. The spectrum of both radicals was quintet and the triradical septet. In the case of biradical containing sulfur the ratio of peaks integrals corresponds well to the theoretically expected values. On the other hand, the ratio of peaks integrals differs from the theoretically expected one for biradical containing phosphorus. The number of lines corresponds to the theoretically expected value in all cases.

The EPR spectra of probes containing pyrene and two containing naphthalene were measured in polymer matrices (iPP, PVC) at room temperature. The measured spectra are the well-known anisotropic spectra of nitroxide radicals with hindered rotations of radicals. The polarity of polymer matrix did not affect the spectra.

Acknowledgements. The authors thank the Grant Agency VEGA for supporting of the project 2/7009/30 and Associate Professor Dr. W. D. Habicher from the Technical University, Dresden, Institute of Organic Chemistry for providing some samples.

REFERENCES