Cryoscopy in the System Na₃AlF₆—Fe₂O₃ ### F. ŠIMKO and V. DANĚK Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-842 36 Bratislava #### Received 21 November 2000 Iron(III) oxide is regarded as impurity introduced into the aluminium reduction cells together with alumina. Reactions taking place in the melt at the dissolution of Fe₂O₃ in molten cryolite were studied using the cryoscopic method. Three different reaction schemes were taken into account, leading to the formation of Na₃FeF₆ and Na₂Al₂OF₆, and/or Na₂Al₂O₂F₄. The cryoscopic experiments were supplemented by the calculation of equilibrium composition using material balance. From the results of the cryoscopic measurements it follows that the number of new species is close to 5, which indicates that Fe₂O₃ reacts with cryolite under formation of Na₃FeF₆ and Na₂Al₂OF₆. Next addition of Fe₂O₃ enables also the formation of Na₂Al₂O₂F₄, the presence of which was confirmed by the IR spectroscopic analysis of quenched melts. The Na₃AlF₆ liquidus curve in the phase diagram of the system Na₃AlF₆—Fe₂O₃ shows an inflex point, which is characteristic of reciprocal systems and indicates that some chemical reaction takes place in the melt. The coordinates of the eutectic point are 1.06 mole % Fe₂O₃ and 1002.7 °C. The chemical nature of the substance crystallizing on the right side of the phase diagram could not be identified due to its very low concentration in the quenched samples. However, according to the result of the IR spectroscopy, it could be probably Na₂Al₂O₂F₄. Iron(III) oxide is introduced into the aluminium cells in different ways. The main source in the electrolyte is alumina, which introduces approximately 190 g Fe/t of produced aluminium. Next iron, or iron oxide sources are e.g. AlF3, prebaked anode blocks, corroded nipples of anode butts, steel rods serving as cathode current supply, etc. In the conditions of the aluminium electrolysis the content of iron oxide in the electrolyte may attain up to 0.4 % [1]. Due to its lower decomposition potential compared with that of alumina, the main amount of iron oxide decomposes on the cathode causing decrease of the current efficiency and lowering of the aluminium quality. The phase diagram of the system Na_3AlF_6 — Fe_2O_3 and the reactions between Fe_2O_3 and cryolite, as the main component of the aluminium electrolyte were recently studied by Diep [2]. From the results of his investigation it followed that Na_3AlF_6 — Fe_2O_3 forms a simple eutectic system with the coordinates of the eutectic point 0.85 mole % Fe_2O_3 and 997 °C. From the course of the liquidus curve of cryolite the author suggested that Fe_2O_3 dissolves in cryolite according to the following reaction $$6Na_3AlF_6 + Fe_2O_3 =$$ = $2Na_3FeF_6 + 3Na_2Al_2OF_6 + 6NaF$ (A) Cryoscopy is a useful experimental method frequently applied in the study of chemical reactions tak- ing place in melts between components. For the lowering of the temperature of fusion of the solvent A, $\delta_{\text{fus}}T(A)$, caused by the addition of the solute B the following equation holds $$\delta_{\text{fus}}T(A) = \frac{RT_{\text{fus,A}}^2}{\Delta_{\text{fus}}H_A} x_B k_{\text{St}}$$ (1) where R is the gas constant, $T_{\text{fus},A}$ and $\Delta_{\text{fus}}H_{\text{A}}$ is the temperature and enthalpy of fusion of the solvent A, respectively, x_{B} is the mole fraction of the solute B, and k_{St} is the semiempirical correction factor introduced by Stortenbeker [3], representing the number of foreign particles, which introduces the solute B into the solvent A. Differentiating eqn (1) according to x_{A} and setting for $x_{\text{A}} \to 1$ we get the relation for the tangent to the liquidus curve of the solvent A, k_0 , at the temperature of fusion of the solvent A $$\lim_{x_{A}\to 1} \frac{\mathrm{d}(\delta_{\mathrm{fus}}T(\mathbf{A}))}{\mathrm{d}x_{\mathrm{A}}} = \frac{RT_{\mathrm{fus},A}^{2}}{\Delta_{\mathrm{fus}}H_{\mathrm{A}}} k_{\mathrm{St}} = k_{0} \qquad (2)$$ Knowing $T_{\text{fus,A}}$ and $\Delta_{\text{fus}}H_{\text{A}}$, from the tangent k_0 we can then calculate k_{St} , which enables one to elucidate the possible chemical reactions between components. In the present work the reactions between cryolite and Fe_2O_3 were studied using the cryoscopic method. The experiment was supplemented by the relevant thermodynamic calculation and IR spectroscopic analysis of quenched melts. #### **EXPERIMENTAL** For the preparation of samples the following chemicals were used: Na₃AlF₆, handpicked natural Greenland cryolite, and Fe₂O₃, reagent grade, Fluka. The reactions between Fe₂O₃ and cryolite were studied in mixtures containing Fe₂O₃ in the range 0 < $x(\text{Fe}_2\text{O}_3) < 0.02$. 10 g of the homogenized sample was placed in a Pt crucible and melted in a resistance furnace. The temperature of the mixture was measured using a Pt/Pt10Rh thermocouple immersed directly into the melt. The thermocouple was calibrated to the melting point of pure NaCl and NaF. The accuracy in the temperature difference measurement between the temperature of fusion of cryolite and the temperature of primary crystallization of the given mixture was \pm 0.2 K. Cooling curves were recorded using a computerized measuring device. The cooling rate did not exceed 2 K min⁻¹. The experimentally determined values of the temperature of primary and eutectic crystallization of individual samples in the investigated systems are given in Table 1. The value of the Stortenbeker's correction factor was calculated from the tangent of the experimental liquidus curve of cryolite at the melting point of pure cryolite according to eqn (2). For the enthalpy of fusion of cryolite the calorimetrically determined value $\Delta_{\text{fus}}H_{\text{Na}_3\text{AlF}_6}=106.75~\text{kJ}~\text{mol}^{-1}$ was used [4]. The dependence of T_{pc} on $x_{\text{Na}_3\text{AlF}_6}$ was expressed in the form of the third-order polynomial $$T_{\rm pc}(\text{Na}_3\text{AIF}_6) = (-6.9496 \times 10^6 + + 2.0949 \times 10^7 x_{\text{Na}_3\text{AIF}_6} - 2.1047 \times 10^7 x_{\text{Na}_3\text{AIF}_6}^2 + + 7.0482 \times 10^6 x_{\text{Na}_3\text{AIF}_6}^3) \text{ K}$$ (3) For the constant of thermal depression, $\frac{RT_{\mathrm{fus,A}}^2}{\Delta_{\mathrm{fus}}H_{\mathrm{A}}}$, the value 126.71 K was obtained. For k_0 and k_{St} the values $k_0 = 680$ K and $k_{\mathrm{St}} = 5.39$, respectively, were then calculated. The results of the cryoscopic measurements in the investigated system are shown in Fig. 1. The IR spectra of pure cryolite, Fe₂O₃, prepared Na₂Al₂O₂F₄, containing small amount of Al₂O₃, as well as of the quenched mixture cryolite + 1 mole % Fe₂O₃, were measured using a Perkin—Elmer 983G spectrophotometer in order to determine the possible reaction products. The spectra were recorded at 300 K as KBr pellets and they are shown in Fig. 2. ## RESULTS AND DISCUSSION In the region of diluted solutions the following limiting relation holds $$\lim_{x_i \to 1} \frac{\partial a_i}{\partial x_i} = k_{St} \tag{4}$$ where a_i is the activity of the solvent expressed in mole fractions x_i using a suitable thermodynamic model Table 1. Temperatures of Primary and Eutectic Crystallization in Melts of the System Na₃AlF₆—Fe₂O₃ | $x(\mathrm{Fe_2O_3})$ | $\frac{t_{\rm pc}({\rm Na_3AlF_6})}{{\rm ^{\circ}\!C}}$ | $\frac{t_{\rm pc}({\rm Na}_2{\rm Al}_2{\rm O}_2{\rm F}_4)}{{\rm ^{\circ}\!$ | $\frac{t_{ m eut}}{^{\circ}\!{ m C}}$ | |-----------------------|---|---|---------------------------------------| | | | | | | 0.0000 | 1008.4 | = | U == | | 0.0025 | 1007.0 | = | 1002.4 | | 0.0025 | 1006.6 | - | 1002.7 | | 0.0050 | 1006.2 | - | 1002.6 | | 0.0050 | 1005.9 | - | 1002.1 | | 0.0065 | 1005.7 | - | 1002.7 | | 0.0065 | 1006.0 | _ | _ | | 0.0085 | 1004.5 | _ | 1003.0 | | 0.0085 | 1004.3 | = | 1003.1 | | 0.0100 | 1003.6 | | 1002.1 | | 0.0100 | 1003.4 | _ | 1002.5 | | 0.0120 | _ | 1005.3 | 1003.4 | | 0.0120 | _ | 1006.1 | 1002.7 | | 0.0150 | _ | 1011.8 | 1003.2 | | 0.015 | _ | 1011.5 | 1002.4 | | 0.02 | - | 1020.0 | 1002.5 | | 0.02 | = | _ | 1002.7 | Fig. 1. Results of cryoscopic measurements in the system Na₃AlF₆—Fe₂O₃. and $k_{\rm St}$ is the semiempirical Stortenbeker's factor, which equals the amount of substance of new (foreign) species which are introduced by 1 mol of the solute into the infinite amount of solvent. Eqn (4) thus defines the physical meaning of the Stortenbeker's correction factor $k_{\rm St}$. If $k_{\rm St}=1$, the solutions obey the Raoult's law and belong to the Ist type of solutions [5]. If $k_{\rm St}\neq 1$, the solutions belong to the IInd type of solutions and do not obey the Raoult's law. The knowledge of $k_{\rm St}$ thus enables to consider the proba- Fig. 2. IR spectra of investigated samples of the system Na₃AlF₆—Fe₂O₃. ble chemical reaction between solvent and the solute. Let us consider 1 mol of mixture with the composition x_1 mol Na₃AlF₆ + x_2 mol Fe₂O₃, where $x_2 \ll x_1$ where the dissolution of Fe₂O₃ in cryolite is accompanied with reaction (A). In equilibrium, when all Fe₂O₃ is dissolved, we get the following equilibrium amounts of the present substances $$n(\mathrm{Na_3AlF_6})=(x_1-6x_2) \; \mathrm{mol}$$ $n(\mathrm{NaF})=6x_2 \; \mathrm{mol}$ $n(\mathrm{Na_3FeF_6})=2x_2 \; \mathrm{mol}$ $n(\mathrm{Na_2Al_2OF_6})=3x_2 \; \mathrm{mol}$ The total amount of all substances is $\sum n_i = (x_1 + 5x_2)$ mol. Since we are in the region of diluted solutions, the mole fractions can be set equal to the activities. For the equilibrium activity of cryolite we then get $$\lim_{x_1 \to 1} a(\text{Na}_3 \text{AlF}_6) = \frac{n(\text{Na}_3 \text{AlF}_6) + n(\text{NaF})}{\sum n_i} = \frac{x_1}{x_1 + 5x_2}$$ (5) since due to the thermal dissociation of cryolite according to the scheme $$Na_3AlF_6 = 2NaF + NaAlF_4$$ (B) sodium fluoride is not for cryolite a foreign species and must be inserted into its activity, too. Differentiating eqn (5) according to x_1 and inserting the limiting con- ditions $(x_1 = 1, x_2 = 0)$ we get $$\lim_{x_1 \to 1} \left(\frac{\partial a(\text{Na}_3 \text{AlF}_6)}{\partial x_1} \right) = \frac{x_1 + 5x_2 - x_1(1 - 5)}{(x_1 + 5x_2)^2} = 5$$ (6) This means that 1 molecule of Fe_2O_3 introduces into cryolite 5 new species, which is in accordance with the assumed reaction (A). The new species are two molecules of Na_3FeF_6 and three molecules of $Na_2Al_2OF_6$, since NaF is in cryolite already present due to its thermal dissociation. Let us now consider that the dissolution of Fe₂O₃ in cryolite is accompanied with the reaction $$3Na_3AlF_6 + Fe_2O_3 = 2Na_3FeF_6 + 1.5Na_2Al_2O_2F_4(C)$$ After dissolution of Fe_2O_3 according to reaction (C) we get the following equilibrium amount of substances $$n(\mathrm{Na_3AlF_6}) = (x_1 - 3x_2) \; \mathrm{mol}$$ $n(\mathrm{Na_3FeF_6}) = 2x_2 \; \mathrm{mol}$ $n(\mathrm{Na_2Al_2O_2F_4}) = 1.5x_2 \; \mathrm{mol}$ The total amount of all substances is $\sum n_i = (x_1 + 0.5x_2)$ mol. The mole fraction of cryolite we can again set equal to its activity, for which we get now the expression $$a(\text{Na}_3\text{AlF}_6) = \frac{n(\text{Na}_3\text{AlF}_6)}{\sum n_i} = \frac{x_1 - 3x_2}{x_1 + 0.5x_2}$$ (7) Differentiating eqn (7) according to x_1 and inserting the limiting conditions $(x_1 = 1, x_2 = 0)$ we get $$\lim_{x_1 \to 1} \left(\frac{\partial a(\text{Na}_3 \text{AlF}_6)}{\partial x_1} \right) =$$ $$= \frac{4(x_1 + 0.5x_2) - 0.5(x_1 - 3x_2)}{(x_1 + 0.5x_2)^2} = 3.5$$ (8) It means that in this case 1 molecule of Fe₂O₃ introduces into cryolite 3.5 new species, which are two molecules of Na₃FeF₆ and 1.5 molecule of Na₂Al₂O₂F₄. Let us finally assume that at the dissolution of Fe_2O_3 in cryolite the reaction $$\begin{aligned} 4 \text{Na}_3 \text{AlF}_6 + \text{Fe}_2 \text{O}_3 &= 2 \text{Na}_3 \text{FeF}_6 + \\ + \text{Na}_2 \text{Al}_2 \text{O}_2 \text{F}_4 + \text{Na}_2 \text{Al}_2 \text{OF}_6 + 2 \text{NaF} \end{aligned} \tag{D}$$ takes place. After dissolution of Fe_2O_3 according to eqn (D) we get the following equilibrium amounts of substances $$n(\mathrm{Na_3AlF_6}) = (x_1 - 4x_2) \bmod$$ $$n(\text{Na}_3\text{FeF}_6) = 2x_2 \text{ mol}$$ $$n(\mathrm{Na_2Al_2O_2F_4}) = x_2 \; \mathrm{mol}$$ $n(\mathrm{Na_2Al_2OF_6}) = x_2 \; \mathrm{mol}$ $n(\mathrm{NaF}) = 2x_2 \; \mathrm{mol}$ The total amount of all substances is $\sum n_i = (1 + x_2)$ mol. For the activity of cryolite we now get the expression $$\lim_{x_1 \to 1} a(\text{Na}_3\text{AlF}_6) =$$ $$= \frac{n(\text{Na}_3\text{AlF}_6) + n(\text{NaF})}{\sum n_i} = \frac{x_1 - 2x_2}{1 + x_2}$$ (9) Differentiating eqn (9) according to x_1 and inserting the limiting conditions we get $$\lim_{x_1 \to 1} \left(\frac{\partial a(\text{Na}_3 \text{AlF}_6)}{\partial x_1} \right) = \frac{3(1+x_2) + (x_1 - 2x_2)}{(1+x_2)^2} = 4$$ (10) In this case 1 molecule of Fe_2O_3 introduces into cryolite 4 new species, two molecules of Na_3FeF_6 , one molecule of $Na_2Al_2O_2F_4$, and one molecule of $Na_2Al_2OF_6$. From the results of the cryoscopic measurements (Fig. 1) it follows that in the infinitely diluted solution of Fe₂O₃ in cryolite the number of new species is 5.37, which is close to 5. This result suggests that the first molecules of Fe₂O₃ react with cryolite according to eqn (A), forming Na₃FeF₆ and Na₂Al₂OF₆. At next additions of Fe_2O_3 also reactions (C) and (D) may probably take place, since at 0.4 mole % Fe₂O₃ the liquidus curve crosses the tangent corresponding to 4 new species and approaches to that corresponding to 3.5 ones. The presence of $Na_2Al_2O_2F_4$ in the quenched melt with the composition 99 mole % Na₃AlF₆ + 1 mole % Fe₂O₃ was confirmed by the IR spectroscopic analysis comparing the IR spectrum of Na₂Al₂O₂F₄ with that of the 1 mole % Fe_2O_3 quenched mixture. However, this compound can be present in the melt also due to the reaction equilibrium $$2Na_2Al_2OF_6 = Na_2Al_2O_2F_4 + 2NaAlF_4$$ (E) taking place in oxygen-containing cryolite melts [6]. The phase diagram of the investigated part of the system Na_3AlF_6 — Fe_2O_3 is shown in Fig. 3. The inflex point on the Na_3AlF_6 liquidus curve is characteristic of reciprocal systems and indicates that some chemical reaction takes place in the melt. The coordinates of the eutectic point are 1.06 mole % Fe_2O_3 and 1002.7 °C, Fig. 3. Phase diagram of the system Na₃AlF₆—Fe₂O₃. which is rather close to the result obtained by *Diep* [2]. The chemical nature of the substance crystallizing on the right side of the phase diagram could not be identified due to its very low concentration in the quenched samples. However, according to the result of the IR spectroscopy, it could be probably Na₂Al₂O₂F₄. Acknowledgements. This work was financially supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under the No. 2/5117/98 and Slovalco, a.s., Ziar nad Hronom, Slovakia. ## REFERENCES - Grjotheim, K., Krohn, C., Malinovský, M., Matiašovský, K., and Thonstad, J., Aluminium Electrolysis. Fundamentals of the Hall-Héroult Process, 2nd Edition. Aluminium Verlag, Düsseldorf, 1982. - Diep, B. Q., "Structure and thermodynamics of cryolite-based melts with additions of Al₂O₃ and Fe₂O₃." Dr. Ing. Thesis. Department of Electrochemistry, Norwegian University of Science and Technology, Trondheim, 1998. - 3. Stortenbeker, W., Z. Phys. Chem. 10, 183 (1892). - Sterten, Å. and Mæland, I., Acta Chem. Scand. 39, 241 (1985). - Malinovský, M., Roušar, I., et al., Teoretické základy pochodů anorganické technologie I. (Theoretical Fundamentals of Inorganic Technological Processes I.) P. 67. Alfa Publishers, Prague, 1987. - Daněk, V., Gustavson, Ø. T., and Østvold, T., Can. Metall. Quart. 39, 153 (2000).