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To describe the equilibrium between the crystalline phase and melt in the system A — A q B r , when 
the substance A g B r partially dissociates upon melting, the special form of the LeChatelier—Shreder 
equation was derived without assuming any hypothetical equilibrium states and the occurrence of 
any hypothetical thermodynamic quantities. To fit both the phase and the chemical equilibrium 
in the system A — A g B r , an original method for the calculation of the values of the degree of 
dissociation of the compound A q B r in the melt, the heat of fusion at dystectic temperature of 
fusion, and the dissociation enthalpy using this equation was proposed. 

In some binary salt systems A—В the binary com­
pounds AgB r , partially dissociating upon melting 
with products being the constituents A and B, may 
be formed. In the molten state these compounds may 
exhibit sometimes a lowered symmetry of the coordi­
nation sphere of the central atom of the complex an­
ion, sometimes they form associates bound by van der 
Waals forces. Owing to this fact and obviously a rela­
tively higher energetic state such compounds undergo 
often at melting a more or less extended thermal dis­
sociation, in some cases they melt even incongruently. 
Evidences of such behaviour may be found e.g. in [1, 
2]. Due to the thermal dissociation, the liquidus curve 
of the compound A q B r in the system A—В exhibits 
at the temperature of fusion a curvature [3] the ra­
dius of which depends on the degree of dissociation of 
the compound A q B r . The higher is the dissociation 
degree, the flatter is the liquidus curve. 

The classical approach to the calculation of the 
liquidus curve of A q B r , suggested e.g. by Kremann 
[4], Roozeboom and Aten [5], Grjotheim et al. [6], 
and Hatem et al. [7], uses as the standard state the 
nondissociated compound A g B r and is based on some 
simplifying assumptions. This approach considers im­
plicitly that the dissociation enthalpy of A g B r is 
equal to zero. Moreover, the calorimetric enthalpy 
of fusion of A g B r , which is frequently inserted into 
the LeChatelier—Shreder equation, is commonly mea­
sured at the experimental temperature of fusion of 
A g B r and not at the hypothetical temperature of fu­
sion of the nondissociated compound. Thus it involves 
also the dissociation enthalpy. 

The aim of this paper is to describe the coexis­
tence of the crystalline substance A q B r with its melt 

using procedure which does not assume any hypothet­
ical equilibrium state. It leads to the special form of 
the LeChatelier—Shreder equation without the pres­
ence of any hypothetical thermodynamic quantity. In 
addition, this equation will be used to calculate the 
values of the degree of dissociation of the compound 
A q B r in the melt, its heat of fusion by fitting the liq­
uidus curves of the A — A q B r phase diagram and -
in particular cases - of the dissociation enthalpy. A 
brief description of the calculation procedure is also 
included. 

T H E O R E T I C A L 

L e C h a t e l i e r — S h r e d e r Equat ion for Binary Sys­
t e m s Involving C o m p o u n d s with Dystectic 
Melt ing Point 

Let us consider a molten system A — A q B r (Fig. 1) 
being at all temperatures in chemical equilibrium. 
(The components of the binary system are denoted 
in bold, the ones of the ternary system (i.e. "the con­
stituents") in regular.) 

The equilibrium coexistence of the crystalline sub­
stance A q B r with the melt in the system A — A q B r , 
in which the compound A q B r in the liquid phase par­
tially dissociates to the constituents A and В at tem­
perature T according to the reaction scheme 

A g B r & qA + rB (1) (A) 

is described by the relation 

/z°(A q B r ,cr,r) = /i(A«,Br,l,a;W|eq,T) = 
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Fig . 1. Phase diagram of a system A — A q B r with dystectic 
temperature of fusion. Ti, Гц, and Г щ are the tem­
peratures of the crystallization at the figurative points 
I, II, and III on liquidus curve of A q B r -

= [1 - a(A) (T)] • /i(A,B r, 1, a;Wieqj T)+ 

+<*(Д)СП • q • ß(A,\,xw<eq,T)+ 

+a ( j l )(r)T-Ai(B,l,xw,eq,r) (1) 

where / i0(AqB r ,cr ,T) is the chemical potential of the 
pure crystalline substance A q B r at the temperature 
T, Xw is the weighted-in mole fraction of the compo­
nent A q B r in the A — A q B r system (i.e. x(Aq"Br)), 
/ i (A q B r ,1,2̂ ,ея> ^ ) 1 S t n e chemical potential of the into 
equilibrium dissociated substance A q B r in the molten 
mixture at the composition rc^eq a n ( ^ the temperature 
T, /х(Х,1,а^)еч,Т) (X = A g B r , A, B) is the chemical 
potential of the constituent X in the molten mixture at 
the same composition and temperature, and a ^ j (Г) 
is the equilibrium degree of dissociation reaction (A) 
in the molten mixture at the temperature T; subscript 

e q denotes quantities related to the phase equilibrium. 
The condition for the assumed chemical equilib­

rium of the reaction (A) is given by the relation for 
the dissociation Gibbs energy 

AdisG(l,rrw,T) = g-/ i(A, l ,x w , r )+ 

+ r - / x ( B , l , a : w , r ) - / i ( A i B r , l > x w > r ) = 0 (2) 

Substituting eqn (2) for x^ = х^уец into eqn (1), it 
can be rewritten in the form 

/ i 0 ( A q B r , c r , r ) = j i(A q B r , l ,a; W | e q j T) = 

= Ax(AgBr,l,XW|eq,r) (3) 

In the following text the quantities corresponding to 
the pure, into equilibrium dissociated substance AqBr 

(x?, = 1) at the considered temperature T will be de­
noted by the subscript +. 

The chemical potential of A g B r in the molten mix­
ture can be expressed in the form 

^(A 9 B r , l ,x w > eq,r) = /i+(A ( 7B r,l,T)+ 

+i?r ina(A 7 B r , l ,x w ,eq,T) (4) 

where /i+(A gB r,l,T) is the standard chemical poten­
tial of the nondissociated constituent A g B r being at 
temperature T in the melt in chemical equilibrium 
with its dissociation products. According to eqn (3) 
the value of /x(A9Br,l,rcW|eq,T) corresponds to that 
of the pure, partially dissociated molten substance. 
a(A gB r,l,xw >eq,T) is the activity of A 9 B r referred to 
the mentioned standard state in a molten mixture at 
the composition ov.eq and the same temperature. 

Substituting from eqn (4) into eqn (3), we obtain 

/z°(A q B r ,cr,r) = / i + ( A g B r , l , T ) + 

+RT In a ( A g B r , 1, xw,eq, T) (5) 

Dividing both sides of eqn (5) by (—T), i.e. trans­
forming the chemical potentials into the corresponding 
Planck's functions, and differentiating according to T 
we obtain the LeChatelier—Shreder equation (both 
standard chemical potentials are differentiated at con­
stant composition Xw = 1) 

д In q(AgB r,l,:cW feq,r) 

dT J p 

Afus.expff ( A q B r , T) 

RT2 

(6) 

where Af u s,exP#(AqB r,r) is the experimentally, i.e. 
calorimetrically or cryometrically, measurable en­
thalpy of fusion of the substance A q B r being partially 
dissociated in the melt according to the scheme (A) at 
the temperature T 

AfuB f expff(A g B r j T) = A f u s t f ( A , B r , r ) + 

+ а ( Л ) 1 + ( Г ) . Д с И в Я ( Л ) , + (Г) (7) 

where а(л)> +(Т) is the dissociation degree according 
to the reaction (A) at temperature T. The activity in 
eqn (6) can be expressed using the definition relation 

/ 

a 
f кр ккцх 
-г- — -^г- =т- = - (*> а+ 

/о 

where /, к, р, кц, and x denote the corresponding 
values of the fugacity, fugacity coefficient, equilib­
rium partial pressure, the Henry constant, and the 
true mole fraction of the considered substance. The 
true mole fraction of the г-th constituent we define as 
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Xi — riilY^ni where щ is the amount of substance 
of the г-th constituent. In other words, the true mole 
fraction is the mole fraction of a constituent in the 
pseudoternary A—В—A g B r system. (Index "0" cor­
responds to the fictive state of pure nondissociated 
molten substance A9B r.) 

The fugacity of the substance in an ideal solution 
is proportional to its mole fraction over the whole con­
centration range provided temperature to be constant. 
The fugacity coefficients and Henry constants do not 
depend on composition in real solutions at constant 
temperature (taking into account also low values of 
fugacity) in a narrow concentration range. 

For ideal solutions and real solutions having the 
composition close to the composition of the pure 
A q B r melt in which reaction (A) reaches equilibrium 
(zw —> 1, T —у Tfus), eqn (8) at constant temperature 
can therefore be expressed in the form 

CL[AqDrj 1, # W ) e q , 1 ) — 
X\J\qÍJrj 1, 3?W)eq, 1 ) 

x+(AqBr,l,T) 
(9) 

The activity of AgB r is thus the ratio of the true mole 
fractions of AgB r in the molten mixture and in the 
melt of the pure dissociated substance A q B r at the 
temperature T. 

Inserting for AfUS)expH(AqBr,T) in eqn (6) 

A f u s , e x p # ( A q B r , T ) = 

= A f u s , e x p # ( A g B r , T f u s ( A q B r ) ) + 

+ fT 

/T f u e(AqB„) / ( 
•/T,u.(AqBr) V 

dA(us<expH(AqBr,T) 

dT 
AT (10) 

and integrating we get after rearrangement 

r f u s (A q B r ) • Г 

T - T f u s ( A „ B r ) f 
In 

ö(Aq,£5 r, 1, XWjeq, 1 ) 

a+(AqBr,\,T) 

_ ^fus,expH(AqBT,Tfus(AqBr)) 

R 

+ 
T(us(AqBr) • T 

T - T{us(AqBT) 

T fdA[us,expH(AqBr,Ty 

( A , B „ ) \ 

(11) 

r ľ 
ľ Jn 

T f U A , B „ ) 

дт 
dT 

RT2 -dT 

For T -¥ Tfus(AqBr) the second term on the right 
side of eqn (11) equals zero and for ideal solutions as 
well as for the real ones at the compositions close to 
the A q B r melt eqn (11) can be rewritten using eqn 
(9) into the form 

lim 
T->T fu„(A,B - ) \ [ r -

T{us(AqBr)-T 

i x(A-q£>r, 1, 3?w,eq? 1 ) 

x+(AqBT,l,T) 

Tfu^AqB,.) 

lim # = 
T-+T{us (A q B, ) 

AfUs,exp^"(AqB r , r f u s ( A q B r ) ) 

R 
= const (12) 

It can be exactly proved that from eqn (12) it follows 

d# d\P 
lim — = 0, resp. lim = 0 (13) 

T->T f u e(AqB r) d T xw ,e q->l dxW )eq 

The calculation of the unknown parameters rep­
resents the topic of the next chapter and is based on 
the special form of the modified LeChatelier—Shreder 
equation (12) as well as on relations (13). 

Calculation of the Degree of the Dissociation 
React ion (A) Using the Known Phase Diagram 

In the calculation of a^A)^+(T{us(Aq
1Br)) the fol­

lowing relations, obtained by means of the stoichio­
metric coefficients of reaction (A) and the value of the 
weighted-in equilibrium mole fraction £w,eq, were used 

X\A.qlir, 1, XW)Gq, 1 ) — 

x+(AqBr,l,T) = 

^Ч-А-, 1, £Wjeq, J. ) — 

x+(A,l,T) = 

(1 - <X(A)(T))xv<eg 

Zw.eqO^Cn • (q + Г - 1) + 1 

(14) 

-̂Wr) (15) 

(16) 

(17) 

a{Ah+(T) • (q + r - 1) + 1 

Xy,,eq(a(A)(T)-q-í) + l 

Xw,eqOt(A)(T) • (q + Г - 1) + 1 

а(А),+ (Т)-Я 

X[Dj 1, X W ) e q j 1 ) — 

x(B,l,T) = 

aiA),+(T)-(q + r-l) + l 

XY,,eqCX(A)(T) -Г 

Ху,,еЧа(А)(Т) • (q + r - 1) + 

a{A),+ (T)-r 

1 (18) 

(19) 
a{A)t+(T)-(q + r-í) + l 

K{AU(T) = K(AU(T)-K(A)^(T) = 

= K(AU,+ (T) • K(A)^+(T) (20) 

K{A)ta(T) is the equilibrium constant of the reaction 
(A) at the temperature T, K(A)iX, #(л),7> K(A)iXi+(T), 
and if( i 4) j 7 j + (r) are the products of the respective 
mole fractions and activity coefficients of the con­
stituents in the melt of the composition Xw.eq and in 
the molten pure compound A q B r (subscript +), re­
spectively. 

Prom the validity of eqns (8) and (20) follow the 
limiting relations 

T -¥ TfU8( AqB, . ) 

Ъ™ВК(А)АТ) = К(А),Х,+(Т) (22) 
i ->- i fue(A q B r ) 
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and thus 

. lim 
T->Tfu.(A,B,) 

d\nK{A)iX(T) 

дТ 

dlnK(A)iXi+(T) 

дт 

_ AdisH{A)(T) + Zi"i- AmiJiiMT) _ 
RT2 

_ &dísH(A),+ (T) 

RT2 (23) 

&disH?A)(T) is the s tandard dissociation enthalpy of 
reaction (А), А т 1 Х Я г ) + ( Т ) and AdiS#(.4),+ C 0 is the 
partial molar enthalpy of mixing of the г-th con­
stituent and the dissociation enthalpy of the pure com­
pound A q B r {yi is the stoichiometric coefficient). 

In the calculation of a ( ^ ) j + ( T f u s ( A < 7 B r ) ) the cour­
ses of the dependences of # (eqn {12)) on rz^eq 
for different values of a ( ^ ) ) + ( T f u s ( A q B r ) ) (and thus 
also if(A),x,+,eq) &re compared. Using #(л),х,+ the 
value of ot(A){T) in eqn {14) for the mole fraction 
a;(A g B r , l,a; W j eq,T) is calculated. The course of # de­
pends on the properties of the considered system. (The 
more detailed course of estimation of all quantities 
mentioned above and the analyses of the correspond­
ing errors will be given in P a r t II.) 

a) T h e melts form ideal solutions of constituents 
At the given conditions (a; = X{\ A f u s C p ( A g B r ) = 

0; AdisH(A){T) = A d i s # ( A ) ) + ( T ) = 0) the following 
relation holds {dp = 0) 

d A f u s > e x p f f ( A q B r , r ) 

dT 
= 0 {24) 

• const (25) 

and eqn {11) transforms to the form 

^(^w,eq,Q:(A)> +(T) = COnst) = 

_ A f u s > e x p # ( A q B r , r f u s ( A q B r ) ) 

R 

For the correct value of a(A)t+(T) eqn {25) is the 
straight line parallel to the Xy, axis. 

b) The melts form ideal solutions of constituents 
at the conditions (a; = x^; A f u s C p ( A g B r ) ф 0; 
AďlsH(A){T) = AďlsH(A)i+{T) = 0) 

According to eqn {11) the graphical form of the 
function ^(a; w > eq,o:(^) > + (T) = const) is a curve fulfill­
ing condition {12). 

c) The melts form real solutions 
If Adis#(A),+ (^) Ф 0, the quantities с*(л),+ a n c * 

K(A),x,+ depend on temperature and the function 
^(^w,eqj^(A),+ (i 1 ) = const) even in the case of ideal 
solutions has a formal character. However, in the vicin­
ity of the dystectic point of fusion of A q B r the tem­
peratures of primary crystallization are only very lit­
tle lowered and thus the values of OL(A),+ and K(A),X,+ 
keep practically constant. Thus for the given constant 

value of ct(A),+ the course of the "formal" function 
Ф in this region of compositions is identical with the 
real course of Ф for ideal solutions as well as for reed 
solutions and is represented by eqn {12). 

According to the amount and reliability of infor­
mation on the investigated system the procedure of 
the determination of the a^A)t+{T{us{Aq'Br)) value is 
as follows: 

1. If the reliability of the course of the liquidus 
curve in the vicinity of T f u s ( A q B r ) is insufficient, the 
knowledge of AfUSiexpH{AqBr)Tfus{AqBr)) for the 
calculation of a^A)^{T{us{AqBr)) is unavoidable. 

The course of \P{xv,ieq,a(A^+{T) = const) calcu­
lated using the coordinates of the figurative points of 
the reliable determined par t of the liquidus curve for 
the chosen constant value of a ( ^ ) ) + ( T f u s ( A q B r ) ) is de­
scribed by suitable regression function. Such a func­
tion must be monotonous without any inflex point and 
it must fulfil the conditions {12) and {13). 

2. If the dependence of the enthalpy of mix­
ing on composition and temperature in the system 
A — A q B r is known, the values of A f u s # ( A g B r , 
2 f u s ( A q B r ) ) and AdisH(A),+ c a n be calculated. 

3. If the course of the liquidus curve is suffi­
ciently reliable in the whole temperature region, the 
course of ^ ( z w ^ a ^ . + CO = const) is described by 
regression function using the coordinates of all ex­
perimentally determined figurative points. The cor­
rect value of Oi(A),+ {Tius{AqBr)) results in a function 
#(zw,eq,a(A),+ (jr) = const) which for Zvv̂ q ->• 1 does 
not show either a maximum or an inflex point and it 
fulfils the conditions {12) and (13); the course of the 
function ^ ( x W ) e q , a ( ^ ) ) + ( T ) = const) in the vicinity 
of Tf u s (A < 7 B r ) depends on the stoichiometric coeffi­
cients q and r. In such a case together with the value 
of a(A^+{Tfus{AqBr)) also the value of the enthalpy 
of the dystectic fusion A{USyexpH{AqBr,Tfus{AqBr)) 
can be calculated. 

The application of the above procedures was 
made to the systems K F — K 3 F M 0 O 4 and K F — 
K 3 F W O 4 and is the subject of the second part of 
this paper. 
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