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The present work is a continuation of our previous attempts to modelling electrical conductivity in 
molten salt mixtures with common ion. The basic assumption of the proposed model is the concept 
of incomplete dissociation of the two salts due to the competition between the two different ions to 
form neutral ionic associations. Starting from the relationship between the dissociation probabilities 
of two dependent processes and probability of the common dissociation process, some expressions 
are proposed for the dissociation probabilities of the salts forming the mixture. We assume that 
equilibrium constants of the dissociation processes may be used just as probabilities in order to 
describe more successfully the incomplete dissociation (or ionic association) and its influence on 
mixture electrical conductivity. We point out the fact that one of the model versions leads to the 
same value for the dissociation degree of a component, irrespective of the second salt in the mixture. 

Because the electrical conductivity measurements 
in molten salts are rather difficult to perform, the re­
sults reported by different authors for the same sys­
tems are often scattered. Among the solutions pro­
posed to solve this problem, some efforts have been 
registered in the last decade to imagine theoretical 
models enabling the calculation of the mixture elec­
trical conductivity on the basis of conductivities of 
individual components [1—4]. 

Our previous attempts [3—5] to modelling electri­
cal conductivity in binary molten salt systems with 
common ion were based on the assumption, firstly pro­
posed by Klemm [6] and then employed by Daněk [1, 
2], of an incomplete dissociation of the two (or more) 
salts forming a mixture. According to Klemm, in a 
binary mixture of charge-symmetric salts with a com­
mon ion, the salt with smaller cation is more asso­
ciated (or otherwise, less dissociated) than the other 
salt at all concentrations. The redistribution of anions 
between the two different cations is responsible for an 
increased ionic association of both salts: the salt with 
the smaller cation is more associated (less dissociated) 
than the one with the bigger cation. 

The experimental conductivity data were satisfac­
torily rendered by our previous theoretical models [3— 
5] but on the occasion we also signaled their major 
drawback: the widely varying values of dissociation 
degrees found for the same salt depending on the sec­
ond salt with which it was combined to form a binary 
system. 

A similar observation has been lately made by 
Klemm and Schaefer [7] when they tried to use a sim­
ple model for ion-counterion interactions (association-
dissociation ionic processes) in order to explain the 

occurrence of the Chemla effect of the ionic mobilities 
[8], that is equal internal mobilities of the cations at 
a certain mixing ratio of two salts. 

In the present contribution we propose a method 
for avoiding the simplifying assumption used in the 
previous models [1—5], according to which binary 
molten salt mixtures are similar to diluted aque­
ous solutions of two additive, monovalent salts where 
the equilibrium constants between electrically charged 
and respectively, neutral species are independent of 
the mixture concentration. In the model we propose 
here, the equivalence between the dissociation equilib­
rium constants in the two pure salts and those in the 
mixture is replaced by a dependence relationship. 

A M o d e l for Ion-Coion Interact ions in Binary 
M o l t e n Salt Sys tem 

If we consider a molten binary system with com­
mon ion, AX—BX, and admit that each component 
is incompletely dissociated in the melt, then the mix­
ture consists of five kinds of particles, three of which 
are charged and two are neutral, i.e. A + , B + , X~, and 
AX and BX 

0 A X F = ^ A + + X " <2> BX * = > B+ + X" (la, b) 

Ф U <2> AX + BX <=> A+ + B+ + X " (2) 

Four equilibrium constants correspond to the above 
equilibriums established between the ionic pairs AX 
or BX and the "free" ions A+, X" and B+, X" 

K0i=a2

01/[l-a2

0l] (3) 
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Ko2=a2

02/[l-al2] (4) 

Ki = a i(x ia i + x2a2)/[{l - оц){1 + хгаг + ж2а2)](5) 

i ŕ 2 = a 2 ( x i a i +x2Q!2)/[(l - a 2 ) ( l + x ia i + х 2 а 2 ) ] ( б ) 

where iroi, -̂ 02 and aoi, «02 are the equilibrium con­
stants and respectively dissociation degrees for the two 
pure salts, K\,K2 and a±,a2 are the same quanti­
ties in the mixture and x\,x2 are mole fractions. Ac­
cording to dissociation models [1, 2], additive binary 
molten salt mixtures behave like diluted aqueous solu­
tions where the equilibrium constants are considered 
to be independent of concentration, and therefore 

K01=Kľ K02 = K2 (7a, b) 

In those models, by eliminating a between the two 
thus obtained second-order equations, one gets a cubic 
equation in which a is then solved numerically. 

In the following, we propose a different algorithm 
for computing the intrinsic dissociation degrees by 
starting from the observation that eqns (7) are not 
justified in the real case of molten salt mixtures. 

We denote as: 
P ( l ) probability for process Ф, dissociation of neu­

tral AX into A + and X~ free ions; 
P(2) probability for process ®, dissociation of neu­

tral BX into B + and X~ free ions; 
P(1U2) probability for process Ф и ® , dissociation 

of both AX and BX species in the mixture. As in the 
mixture the first two processes condition each other, 
one may use the mathematical relations 

P ( l U 2) = P ( l ) + P(2) - P ( l П 2) (8) 

Р ( 1 П 2 ) = Р(1|2) x P ( 2 ) {9a) 

Р ( 1 П 2 ) = Р ( 2 | 1 ) х Р ( 1 ) {9b) 

where P ( l | 2 ) and P ( 2 | l ) are respectively, the prob­
ability of the dissociation process Ф in the presence 
of the dissociation process ® and vice versa. Finally 
from eqns (8) and (9) one obtains 

P ( l U 2) = P ( l ) + P(2) - P ( l | 2 ) x P(2) (10) 

P ( l | 2 ) x P(2) = P ( 2 | l ) x P ( l ) {11) 

Thus, the whole matter reduces to determining the 
above introduced probabilities. 

The first step is to consider, according to Bjerrum's 
theory of the ionic associations [9], that probabilities 
for the dissociation processes (1) are the very dissoci­
ation degrees 

P(l) = <*oi P{2) = a02 {12a, b) 

By using eqns {3) and (4), one obtains the relation­
ships between the equilibrium constants of the disso­
ciation processes and their respective probabilities 

P ( l ) - l/y/(l + l/Koi)P(2) = l/y/(l + l/K02)(13) 

In order to establish the probability of the unified pro­
cesses, P ( l П 2), we introduce the dissociation equi­
librium constant in the mixture, К 

К = aia2{xiai + x2a2)/ 
[(1 - a i ) ( l - a 2 ) ( l + хюц + x2a2)} {14) 

which subsequently allows us to determine P ( l U 2), 
the probability for the unified dissociation processes 
Ф и ® from the constant К by means of an expression 
similar to {13) 

P ( l U 2) = l/y/(l + l/K) {15) 

or, after introducing eqn {14) 

P(1U2) = [aia2{xiai~\-x2a2)/{aia2{xia^+x2a2)-\-
(1 - a ! ) ( l - a 2 ) ( l + m a i + x2a2)}]* {16) 

Similarly, we can calculate the probability P ( l | 2 ) for 
the dissociation process Ф in the presence of the dis­
sociation process ® starting from the K\ constant, by 
employing eqns {13) and {15) 

P(l\2) = l/y/{l + l/K1) (17) 

By replacing Ki in eqn {17) with its expression given 
by eqn (5), it results 

P ( l | 2 ) = y/otiixiOLx + x 2 a 2 ) / ( l - z 2 a i + ^ 2 ^ 2 ) {18) 

Following the same pattern, the probability of the dis­
sociation process ® in the presence of the dissociation 
process Ф is 

P ( 2 | l ) = y/a2{x1a1 + х2а2)/{1 + хгаг - хга2) {19) 

Finally, one introduces in eqns {10) and {11) the prob­
abilities P ( 1 ) , P ( 2 ) , P ( 1 U 2) ,P(1 П 2),P(1|2), and 
P ( 2 | l ) as computed above and writes 

[aia2{xiOii + z 2 a 2 ) / { a i a 2 ( x i a i + x p a 2 ) + 
(1 - a i ) ( l - a 2 ) ( l + xiai + z 2a 2)}]2 = a0i 4- a02-
-Oioi[a2{xiai + x2a2)l(\ + xicti - xia2)]* (20) 

al1a2{x1a1 + x2a2)/{l + xxai - xľa2) = 
— 0%2аЛх1а1 + X20í2)/(l — x2al + x2a2) {21) 

Expression {21) can be rearranged as a second-order 
equation of the variable a2 
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Table 1. Comparison between Experimental Data, Лехр, and Conductivity Values as Calculated according to Series-Dissociation 
Model, Versions I and II, for Iodide Mixtures at 950 К 

System 

Lil—Nal 

Lil—KI 

Lil—Rbl 

Lil—Csl 

x(Lil) 

1.0 
0.757 
0.552 
0.504 
0.298 
0.0 

1.0 
0.716 
0.650 
0.514 
0.231 
0.0 

1.0 
0.910 
0.552 
0.271 
0.0 

1.0 
0.946 
0.780 
0.532 
0.284 
0.243 
0.0 

Лехр 

S cm 2 m o l - 1 

218.31 
179.44 
165.38 
164.85 
150.86 
132.06 

218.31 
152.97 
136.51 
118.65 

89.33 
82.23 

218.31 
176.30 
101.26 

76.49 
68.28 

218.31 
155.70 
116.16 

82.95 
73.47 
70.21 
62.44 

ASD 

S cm 2 mol" 

218.77 
179.44 
164.97 
163.79 
153.40 
132.46 

224.25 
144.76 
135.65 
118.49 

88.59 
84.95 

227.60 
165.04 

94.35 
81.47 
71.83 

229.61 
159.13 

97.09 
75.49 
68.94 
68.36 
66.57 

0"SD 

_ 1 S cm 2 m o l - 1 

0.47 

1.76 

3.45 

3.49 

Č(ASD) 

% 

-0.21 
0.00 
0.25 
0.64 

-1.68 
-0.31 

-2.72 
5.37 
0.63 
0.14 
0.83 

-3.30 

-4.26 
6.39 
6.82 

-6.52 
-5.19 

-5.17 
-2.20 
16.41 

8.99 
6.16 
2.63 

-6.61 

O!oi;ao2 

0.435 

0.995 

0.679 

0.839 

0.625 

0.809 

0.565 

0.815 

ASD 

S cm 2 mol" 

215.77 
181.55 
167.99 
166.81 
155.57 
132.17 

221.57 
145.51 
136.46 
119.23 

88.98 
85.12 

225.67 
165.45 

94.95 
81.69 
71.71 

226.55 
158.50 

97.22 
75.39 
68.52 
67.89 
65.79 

C S D 

-1 S cm 2 m o l - 1 

1.10 

1.44 

3.16 

3.29 

£ ( A S D ) 

% 

1.16 
-1.17 
-1.58 
-1.19 
-3.12 
-0.08 

-1.49 
4.88 
0.04 

-0.49 
0.39 

-3.51 

-3.37 
6.15 
6.23 

-6.80 
-5.03 

-3.77 
-1.79 
16.30 
9.12 
6.73 
3.30 

-5.36 

Ö0i;Ck02 

0.445 

0.995 

0.489 

0.685 

0.469 

0.675 

0.465 

0.675 

A - molar conductivity; a - standard deviation; aoi,Q:o2 - dissociation degrees of pure salts; s - relative error. 

^2^oi a2 + [Q:oi(1 -X2OLI) + xial2ai]a2-
-al2a1(l + x1a1)=0 (22) 

If eqn (22) is subsequently rearranged as an explicit 
function of a2 and then introduced in eqn (20), an 
equation of an order higher than two is obtained which 
consequently can be solved numerically. 

R E S U L T S A N D D I S C U S S I O N 

The dissociation degrees of the two individual com­
ponents, aoi and ao2, were computed by employing 
our own experimental conductivity and density data 
[10] by means of the expression given by the series-
dissociation model, also proposed by us in a previous 
paper [4] 

A = ^2/[ж1 V?aoi/ai Ai + x2V*'a02 /fa2\2] (23) 

under limiting condition 
N 

]Г)[Аехр(г) - Л(г)]2 = min (24) 
г = 1 

In the above expressions, A, Ai, and A2 are molar con­
ductivities of the mixture and respectively the two 

pure salts, V, V\, and V2 are molar volumes. We have to 
mention here that eqn (23) has been worked out in our 
previous papers [3—5] on the basis of two premises: 
the incomplete dissociation of the two salts proposed 
by Daněk [1, 2] and respectively the analogy suggested 
by Fellner [11, 12] between an equivalent circuit of 
electrical resistors and the melt resistance, the lat­
ter being calculated as a sum of contributions of the 
individual components which are linked together ei­
ther in series or in parallel. Therefore, the equation 
used by Daněk in [1] can be obtained according to the 
Fellner model for parallel coupling of the salts in the 
mixtures [11] by multiplying molar conductivities Ai 
and A2 of the pure salts by dissociation degree ratios 
ai/aoi and a2/ao2. We have shown [4] that eqn (23) 
renders the experimental data for alkali iodide mix­
tures better than the Daněk expression does. Because 
neither eqn (22) nor its derivatives against aoi and 
ao2 can be expressed as explicit functions of a\ and 
a2, a searching algorithm is employed for finding the 
condition of minimum. The results thus obtained for 
950 К are listed in those columns of Table 1 marked 
with I. 

It can be seen that the proposed model predicts 
quite satisfactorily the molar conductivity experimen­
tal data, with standard deviations between 0.47—3.49 
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Fig. 1. Molar electrical conductivity calculated according to version II of the model (full lines); the points represent experimental 
values; Lil—Nal (•), Lil—KI (D), Lil—Rbl (•), Lil—Csl (V). 

S cm2 m o l - 1 , much lower than those registered when 
using the original "dissociation" model [2] (for exam­
ple, in the case of Lil—Csl mixture, Daněk reported 
cr(950 K) = 12.77 S cm2 mol" 1 ) . The a 0 values for 
Lil vary depending on the second salt with which it is 
combined and they range between 0.435—0.679. 

Some more pertinent results were obtained when 
we considered the dissociation constants as being the 
probabilities themselves of the dissociation processes, 
respectively: 

P ( l ) -> Koi and P(2) -> KQ2 for dissociation pro­
cess (D and ® in the simple salts; 

P ( l | 2 ) -> Kľ and P ( 2 | l ) -> K2 for the dissocia­
tion process taking place in the mixture, that is Ф in 
the presence of © and (2> in the presence of Ф, respec­
tively; 

P(1U2) -> К for the common dissociation process 
(D U @ in the mixture. 

Therefore, after replacing the equilibrium con­
stants in eqns (10) and (11) it results 

aia 2(xia:i+X2a2)/[(l-ai)(l-a2)(l+xiai-r-a;2a2)] = 
= <*oi/[l - *oi] + <*02/[l - «02] - {<*02/[l - a 2

2 ]}x 
x{a i (z ia i + x2a2)/[(l - a i ) ( l + xic*i + x2a2)]}(25) 

and then 

{^oi/I1 - otl1]}a2(x1a1 + x2a2)l 
[(1 - a 2 ) ( l + x i a i + x2a2)] = 

= {a02/[! - ^02]} al(^l^l + £2^2)/ 
[ ( l - a i ) ( l + x ia i +x2a2)] 

From eqn (26), one obtains for a2 the expression 

a2 = a ^ 2 ( l - a ^ ) a i / 

a; 01 (1 a, 02 ) ( i <*i) + al2(l - al^ai] (27) 

(26) 

and after introducing it in eqn (25) one writes a 
fourth-order equation which can be solved numeri­
cally. 

The theoretical molar conductivities and aoi5^02 
values were computed like in the version I and they are 
listed in Table 1 in the columns marked with II, while 
the calculated molar conductivities are shown in Fig. 1 
(the points represent experimental values). It is easily 
noticed that the improvement is achieved when using 
the version II of the model, namely that aoi values 
of Lil are almost similar for all four systems as they 
lie in the range 0.445—0.489. Again, the calculated 
conductivity values II are in good agreement with the 
experimental data, as standard deviations are close to 
those obtained when using version I of the model. 
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