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A relatively simple method has been developed for the integration of highly stiff sets of differential 
equations. The method is based on the semi-implicit Euler scheme which makes it possible to solve 
the resulting algebraic equations separately with the aid of always converging procedures such as the 
interval halving or "regula falsi". An alternative algorithm has been presented for the size control of 
variable time step in the course of the computation. The developed semi-implicit Euler method has 
been extensively tested and compared to some implicit and semi-implicit techniques. Problems have 
been discussed with the convergence of the iterative solutions of the nonlinear, algebraic systems 
resulting from the implicit schemes. Behaviour of various methods is also examined when they are 
applied to a practical problem in reaction engineering. Computed break-through curves have been 
confronted with the experimental measurements. 

Mathematical models of the dynamic behaviour of 
the chemical reactors with multiphase and multicom-
ponent systems are mostly embodied by sets of the 
ordinary differential equations (ODE) or by systems 
of the partial differential equations (PDE) with the 
time derivative. Various combinations of the ordinary 
and partial differential equations frequently occur in 
modelling. In general, the systems of model equations 
are nonlinear. The reaction terms or the terms describ­
ing mass transfer between different phases are usually 
found as the sources of nonlinearities. In addition to 
chemical reaction and interfacial mass transfer, the 
conservation equations include convection, accumula­
tion and, quite frequently, also dispersion. 

A characteristic feature of the noncatalytic, gas— 
solid reaction systems is the simple fact that a more 
or less pure solid particle reacts quite rapidly with a 
very lean gas phase. Contacting the hot flue gas with 
limestone or lime can serve as an illustrative example 
[1]. Elementary arithmetic predicts that a volume of 
1 cm3 of the solid CaO is stoichiometrically equivalent 
at 850 °C to an enormous volume of about 1.5 m3 of 
flue gas containing 0.1 vol. % S 0 2 . As we found [2, 3], 
the sulfation reaction is quite rapid at high temper­
ature. This is the case particularly in early stages of 
the reaction even though the partial pressure of sulfur 
dioxide is very low. 

It is the combination of the considerable rapidity of 

reaction and the very large reaction (sorption) capac­
ity of the solids which is the principal cause of the high 
stiffness of such systems in the physicochemical sense. 
The character of stiff systems necessitates the use of 
an extremely small increment of time when common 
difference schemes are employed for the integration. 
Since the large reaction times are usually of practi­
cal interest, such computation can hardly be feasible 
with the use of conventional methods. It should be 
noted that the problems associated with solving the 
stiff systems do not only reside in approximating the 
true solution or in the stability of the employed dif­
ference scheme. There are also difficulties involved in 
determining the roots of simultaneous sets of the non­
linear algebraic equations that result from the implicit 
schemes. It appears that convergence of the iteration 
procedures can be conditioned by the use of very small 
increments of time or an initial estimate must be very 
close to the true solution. 

Development of computational methods to solve 
the stiff ordinary differential equations has reached a 
certain level [4—14]. However, the situation as regards 
the numerical techniques for solving the partial differ­
ential equations is less satisfactory (e.g. [15, 16]), even 
though such systems frequently occur in reactor engi­
neering. In more or less standard situations, codes and 
packages (e.g. GEAR, GEARB, EPISODE or ODE-
PACK) can often ease the computational difficulties. 
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Practice shows that a diversified approach is usually 
needed in which previous experience and intuition still 
play an important role. 

In a recent study of ours [17] we reported results on 
sorption of sulfur dioxide from flue gas in a fluidized 
bed of inert particles containing magnesium oxide. 
The measured transient curves of sulfur dioxide were 
employed for determining the kinetics of this high-
temperature, sulfation reaction. At that time, strict 
space limitations did not make it possible to present 
the numerical solution of the model equations. The 
technique was later further improved, tested and suc­
cessfully applied also to notably different systems. 

In this paper, we demonstrate this simple method 
and compare it to the procedures of other authors. 

Outl ine of t he P rob lem 

We assume that the model is embodied by a sys­
tem of highly stiff ordinary (ODE) or partial differen­
tial equations (PDE). Such set describes the states of 
the gas concentrations and the solids conversions as a 
function of time and position within the reactor. We 
refer to the concept of stiffness as defined for ODE sys­
tems, e.g. in [7]. In the case of PDE sets, this character 
can be ascribed to such equations the approximation 
of which in the spatial variable leads to the stiff ODE 
systems. 

The explicit difference schemes seem to be attrac­
tive for their simplicity. Unfortunately, they are known 
to be mostly unstable or to have extremely limited 
stability regions of the time. 

The implicit schemes are usually stable or have 
considerably wider stability regions. But the implicit 
methods require the solution of nonlinear systems of 
algebraic equations (NAE) the number of which can be 
large, particularly with PDE. In such a case the prob­
lems occur how to find a successful iteration method. 
The conditions of convergence of the iteration tech­
niques depend on the employed time and spatial steps 
(At, Aw). Common experience shows that the result­
ing sets of nonlinear equations can converge only for 
very small At. If the time step is larger, then the ini­
tial guess of an iteration process must be assigned 
extremely close to the sought solution which poses 
a problem again. As an illustration, the Newton— 
Raphson method can be mentioned as a widely rec­
ommended iteration technique. The fundamental con­
dition concerning convergence requires an initial guess 
to be "near" the true solution of the set of equa­
tions (e.g. [18]). In solving of NAE resulting from the 
difference approximation of the differential equations, 
such an ambiguously defined condition can generally 
be met only if the time step tends to zero (At —• 0). 

Standard semi-implicit methods that do not neces­
sitate a NAE solution may lead in some cases to the 
results falling outside of the definition region of the 
sought quantities. 

In search of an adequate numerical procedure, our 
aims are as follows: 

To find a difference scheme which can be solved at 
every time step by some always converging techniques 
and with a tolerance which can be reliably estimated. 

Choosing a variable time step, At, the number of 
integration steps at preserving a realistic tolerance of 
the overall error of the solution is minimized. Effort to 
find an effective procedure is of particular importance 
when the integration of the model (stiff) equations 
becomes a subproblem of some often repeated process 
as e.g. in evaluating the model parameters from the 
experimental data. It is a well-established fact that 
most of the iteration techniques have a defect which 
resides in the initial estimate. 

If a proper choice of the initial estimate is not 
made, the convergence is not ensured. There are only 
two, always converging procedures for solving the non­
linear equations: the method known as "interval halv­
ing" and the "regula-falsi" iteration. Both of them 
can be employed for solving an equation in the form 
f(x) = 0, where f(x) is a continuous, real function 
of the real variable, x. Both algorithms assume that 
the function has one and the only one root on a cer­
tain, initial interval x G (a,b). When using either 
method we know the maximum error quite accurately. 
No other criteria for stopping the iteration process are 
needed. In fact, such criteria do not guarantee that the 
approximation is reliably close to the true solution. 

Both the above methods cannot be generally ap­
plied to the systems of NAE. This fact makes it im­
possible to consider the implicit scheme in search of a 
feasible, finite difference pattern. The only possibility 
is to resort to a suitable "semi-implicit" scheme, cho­
sen in such a way that the resulting system will be the 
set of real equations always with one unknown vari­
able. Some procedures in formulating the semi-implicit 
schemes are shown in solving a real illustrative model 
in the next paragraphs. 

In choosing the variable time step, different proce­
dures can be used in dependence on the fulfilment of 
certain criteria. Apart from a strategy for optimizing 
the time step as described below, the strategies pro­
posed in [19] and [20] are also employed in this work. 
To examine how accurately the numerical results ap­
proximate the models, an overall mass balance was 
computed simultaneously with the solution. In its way, 
this procedure provides the total sum of all possible 
errors of the solution coming from a variety of sources. 
As shown, this checking can serve as the basis for con­
trolling the variable time step. 

The model solutions provided by the proposed, 
semi-implicit method with the different strategies for 
the control of A t are compared with the solutions 
obtained by five different procedures. The computed 
break-through curves were also verified by the mea­
sured concentrations in the gas phase at the exit of 
reactor. 
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M a t h e m a t i c a l Model 

Three mathematical models were developed for the 
sorption of sulfur dioxide by magnesium oxide in a 
semi-batch reactor with fluidized bed [17]. The con­
servation equations have been formulated for different 
combinations of the limiting flow conditions, i.e. for 
ideal mixing and plug flow regimes. The models refer 
to the batch operations, in which no sorbent particles 
enter or leave the bed. The reactor is of continuous-
flow character from the standpoint of the gas phase. 
One of the models (V2) is given below. 

This model assumes that the gas phase occurs in 
plug flow and the solids are ideally mixed. Then, С = 
C(w,t), X = X(t) for w e (0,1) and t > 0. This 
situation is described by 

dX ľ1 

— = J R(C,X)dw (2) 

The initial conditions are 

C(w,0) = Co, X(0) = 0 for w E (0,1) (3) 
and the boundary condition is 

C(0,i) = Co f o r i e ( 0 , o o ) (4) 

The reaction term R(C,X) in eqns (1) and (2) is 
defined by the nonlinear, empirical relationship 

Ä(C, X) = 0.3653 С 0 ' 8 7 3 • (0.4 - X)1'70 (5) 

deduced from the experimental measurements given 
in [17]. 

The quantities ts and tg in the model equations are 
the stoichiometric time and the mean residence time of 
gas in the bed, respectively. Their values widely differ 
in the orders of magnitude. While the mean residence 
time of gas is usually of the order of magnitude, ig « 
10 _ 1 , the stoichiometric time is mostly in the region 
t « 106—108. The illustrative problems presented in 
this work were solved with ig = 0.23, ts = 20003, and 
C0 = 0.0033. 

With such values of ts and fg, the model systems 
have the high stiff character as defined in the pre­
ceding paragraphs. Experience shows that the conven­
tional integration methods can proceed only if the step 
size is as small as 10~2—10~3. Practical needs require 
the operational time of the sorption over a wide range 
of 104—105. In some cases, the step size, At, can be 
somewhat enlarged as the solution is approaching the 
steady state and/or the exhaustion of sorbent. In gen­
eral, the classical integration methods are forced to 
take very small steps on a considerably large interval 
of time the size of which is not known in advance. Due 
to this fact, the conventional integration procedures 
become extremely inefficient. 
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Integral Conservat ion Equat ions 

Having in mind an integral balance of the active 
gas component in the bed, we introduce a variable 

where Cw(£) is the concentration of gas at the exit of 
the bed in a given time t. On integrating the model 
equations over the variable t and the variable w in 
the interval (0,1), we alternatively express the same 
quantity X(t) for the chosen model V2 

Tit) = x{t) + kr^dw (7) 

It is apparent that the exact solution will provide 
the same values of X(t). Possible differences in X(t) 
computed from eqns (6) and (7) can be attributed to 
the numerical procedure as a whole. These differences 
reflect all conceivable errors which can result from the 
use of a chosen difference scheme and time step strat­
egy. They also follow from the approximate solutions 
of NAE systems that have to be iteratively solved in 
each time step. 

The above integral relationships offer an engineer­
ing means of assessing the quality of the numerical 
results obtained with the aid of a chosen difference 
scheme and applied strategy for the control of step 
size. It can be viewed as a "cross reference" of the 
computations. Since the integrals in eqns (6) and (7) 
are numerically evaluated on the same mesh as the 
model solution, a possible effect of the grid density 
is greatly reduced, if not entirely eliminated, in this 
respect. 

Solving the Model 

The above-mentioned model V2 is solved by the 
method which is the main subject of this work and 
that is described below. It is denoted in the text as 
SIMEL (semi-implicit Euler scheme). For the compar­
ison, the model V2 is also integrated by a number of 
other numerical techniques. 

The model was solved with a variable time step 
controlled by one of the following strategies. One of 
these strategies is that proposed in [19] which com­
pares in each step the computed result with the "back­
ward Euler" value (BE). The second technique, "step 
halving" (HV) was proposed in [20]. The "balance cor­
ridor" procedure (ВС) was developed and also em­
ployed in this work. The SIMEL difference scheme, its 
solution as well as the optimization strategies BE, HV, 
and ВС are described in the next paragraphs. 

SIMEL Difference Scheme 

In constructing the finite difference scheme, the 
time and the spatial derivatives of the variables С and 
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X are approximated with the backward differences. 
The integral of the function R is evaluated with the 
aid of the trapezoidal rule. In order that the result­
ing system of the nonlinear equations could be solved 
step-by-step by the method of interval halving, the re­
action term is replaced in the respective equations as 
follows 

in eqn (1) R = R[C(w, t), X(t - At)} 

in eqn (2) R = R[C{w, t - At), X(t)] 

(8) 

(9) 

We discretize the spatial variable w by an incre­
ment of Aw = 1/n and write 

w = i • Aw wo = 0 (10) 

d{t) = C(wi,t) for i = 1,2,...,n C0(t) = C0 (U) 

Xi(t) = X(wut)=X(t) (12) 

Then, the resulting finite difference scheme of the 
model reads 

Cj(t) - d(t - At) _ 1 dW-d-^t-At) 
At 

for i = 1,2, . . . ,71 

tg Aw 

^CoR(Ci(t),X(t-At)) 

(13) 

г "^,"- й "4Ё№(.-Д.)Д(.)К 
+ Rid-^t - At),X(t))} • Aw 

(14) 
The nonlinear equations resulting from the respec­

tive schemes can be solved with respect to C(t) and 
X(t) by the procedure of interval halving with the 
initial intervals (0,C) and (0,X = 0.4), respectively. 
The number of these iterations is chosen with respect 
to the error term given by 

\xN - x*\ = \b-a\ 
2N 

(15) 

Aside from the convergence of the finite difference 
procedure for PDE, the aspect of "consistency" of 
this scheme must also be examined as pointed out 
in [18] and illustrated on the approximation of the 
heat-conduction equation as proposed by DuFort and 
Frankel. 

The scheme SIMEL, as applied to the original 
PDE, is not consistent with the original eqn (1) for 
At I Aw = const when At, Aw —• 0. We work with the 
ODE system at a spatial step Ait; = const that is a 
substitute for the PDE. Thus, the question of the con­
sistency loses its sense and the point is reduced to a 
problem of the approximations of ODE given by eqns 
(13) and (14). 

Further details on the approximation as well as the 
discussion of the SIMEL scheme stability are given in 
the Appendix. 

Control of t h e T i m e Step 

Three following procedures were employed to con­
trol the time step. 

Step Halving (HV) 

The idea of this approach is based on the estima­
tion of local error by evaluating a difference in solu­
tions obtained when a full-step and half-step is used. 
The choice of a new time step is then given by a pro­
cedure described in [20]. This strategy can generally 
be applied to the control of various schemes. 

Backward Euler St ra tegy (BE) 

Choice of a new integration step results from com­
parison of the solution provided by a given method 
and the solution obtained by the Back Euler formula. 
Such a procedure is described in [19]. In the case of the 
SIMEL scheme, the procedure minimizes the error of 
this method with respect to the fully implicit scheme 
of Euler. 

Balance Corr idor St ra tegy (ВС) 

Philosophy of this procedure rests upon the need 
to work with A t as large as possible and on the simul­
taneous requirement to fulfil the integral conservation 
eqns (6) and (7) within the pre-set interval of errors 
(balance corridor). With an in advance prescribed cor­
ridor (a,/?), we choose Atnew as 

Ainew = At if a < Eb < ß (16) 

Atnev, = 2At if Eb< a (17) 

or 

where 

Ain e w = At/2 ifEb>ß (18) 

Еь = 
Ar(i) - Al(t) 
Ar(t) + EPS 

Ar(t) = r(t) -r(t - A 

Al(t) = l(t) - l(t - At 

(19) 

t) (20) 

) (21) 

r(t) is the right-hand side of eqn (6) and l(t) is the 
right-hand side of eqn (7). EPS is a small positive 
parameter that makes it possible to choose whether 
the relative or the absolute error is controlled. The 
obtained value is tested again if it does not exceed the 
prescribed A i m a x . 
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Table 1. Numerical Results with Different Methods 

C ( l , i m a x ) - 1 0 3 

c m i n • 103 

i-break 
Ac-final 
Ař-min 
RE relative to RRSTIFF 
Error in balance/% 
Comput. time/s 
Comput. steps 
Reject 
Error 

RRSTIFF 

3.152 
-
-
-
-
-
-

30.0 
636 
-
-

CMR 

3.151 
4.7 x 10~4 

-
3.7 x 102 

1.0 x 10~ 3 

7.7 x 10~5 

0.016 
44.1 
83 

0 
-

BMR 

3.151 
4.9 x 1 0 " 4 

-
5.0 x 102 

3.8 x 1 0 - 4 0 

4.4 x Ю - 5 

0.021 

300.5 

304 
598 

-

MICH3 

3.152 
4.8 x 1 0 " 4 

-
1.6 x 103 

1.0 x 1 0 " 3 

7.9 x 10~ 6 

0.050 

20.0 
57 

0 

-

SIMEL 

3.146 
4.4 x 1 0 " 4 

-
1.2 x 102 

1.0 x 10~ 3 

2.8 x 1 0 " 3 

0.345 

804.4 

935 
0 

-

IMEL 

3.150 
5.4 x 1 0 " 4 

-
1.2 x 102 

1.0 x 10~3 

5.2 x Ю - 4 

0.147 

162.4 

282 
0 

-

Model V2, n = 5, r = 0.87, At control: HV, relative error tolerance: 10~ 4, tn 14760. 

Table 2. Numerical Results with Different Methods 

C ( l , i m a x ) . 1 0 3 

c m i n • 103 

i-break 
At-final 
Ai-min 

RE relative to RRSTIFF 
Error in balance/% 
Comput. time/s 

Comput. steps 
Reject 
Error 

RRSTIFF 

3.152 

-
-
-
-
-
-

30.0 

636 

-
-

CMR 

3.152 

2.3 x 10~ 4 

-
1.0 x 102 

1.0 x 1 0 " 3 

7.6 x 1 0 " 5 

0.000 
44.5 

174 

0 

-

BMR 

3.151 
4.9 x 10~4 

-
5.0 x 102 

3.8 x Ю - 4 0 

4.4 x 10~ 5 

0.021 
300.5 
304 

598 

-

MICH3 

3.152 

4.7 x 1 0 " 4 

-
1.0 x 102 

1.0 x 1 0 " 3 

6.1 x 10~ 6 

0.001 
34.0 

174 

0 

-

SIMEL 

3.141 
1.5 x 1 0 - 4 

-
6.2 x 101 

1.0 x 10~ 3 

3.5 x 1 0 " 3 

0.844 
300.7 

794 

0 

-

IMEL 

3.147 
9 .7x,10" 4 

1.0 x 102 

1.0 x 1 0 " 3 

1.3 x 1 0 " 3 

0.452 
61.9 

217 

0 

-

Model V2, n = 5, r = 0.87, At control: ВС (corridor (0.5,1 % ) , tn 14760). 

R E S U L T S A N D C O M P A R I S O N 
W I T H O T H E R M E T H O D S 

The model V2 was systematically solved with the 
semi-implicit Euler scheme (SIMEL) developed in this 
work. For comparison, these model equations were also 
integrated by a number of the following, more or less 
classical methods: 

IMEL (Implicit Euler Method), L-stable, the 1st 
order 

Rosenbrock method, A-stable, the 3rd order 
CMR, implicit, A-stable, the 2nd order [19] 
BMR, implicit, L-stable, the 3rd order [19] 
ISI3, semi-implicit Runge—Kutta method, A-stable, 

the 3rd order [6] 
MICH3, Michelson's modification of ISI3, A-stable, 

the 3rd order [20] 

The strategies HV, BE, and ВС were employed in 
all the above procedures to control the size of time 
step. 

RRSTIFF is a code developed at the Department 
of Chemical Engineering, Technical University Delft 
(the Netherlands). It works with automatic control of 
the integration step and is suitable for the stiff as well 

as nonstiff systems. 
The results.of testing are summarized in Tables 

1—5. Since the Rosenbrock method and the procedure 
ISI3 behave similarly, their results are not mentioned 
in these tables. 

As it might be expected, this comparative study 
shows that all the above methods are very effective 
(i.e. rapid and accurate), provided they do not cease 
to function. This comparison also indicates that with 
certain values of the model parameters, these current 
methods lose their efficiency or they do not work at all. 
Such a situation can occur due to the reaction term 
R[Cr, (Хтлх - X)s] when the power г or 5 is less than 
unity (i.e. r < 1 and/or 5 < 1). For С -> 0+, such 
models have singularities of the elements in Jacobian 
of the ODE system. The reaction terms are not defined 
for С < 0 or X m a x - X < 0. This fact can lead to 
considerable difficulties associated with the common 
numerical procedures: 

1. Though always stable, the implicit schemes are 
considerably restricted by the convergence radius of 
a given iteration method, particularly for appreciable 
values of At. Moreover, there is a real possibility that 
the values of С can become negative in the course of 
iteration. 

2. Semi-implicit, always stable methods, using the 
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T a b l e 3. Numerical Results with Different Methods 

C ( l , i m a x ) 1 0 3 

Cmin • 10 
i-break 
Ac-final 
At-min 
RE relative to RRSTIFF 
Error in balance/% 
Comput. time/s 
Comput. steps 
Reject 
Error 

Model V2, n = 5, r = 0.87 

RRSTIFF 

3.152 

-
-
-
-
-
-

30.0 
636 

-
-

, At control: BE 

CMR 

3.152 
4.5 x 10~4 

-
7.1 x 101 

1.0 x 1 0 " 3 

4.1 x 1 0 " 6 

0.000 
146.2 
654 

0 

-

, TOL = 0.001, 

T a b l e 4. Numerical Results with Different Methods 

C ( l , t m a x ) - 1 0 3 

c m i n • 103 

i-break 
Ai-final 
Ai-min 
RE relative to SIMEL 
Error in balance/% 
Comput. time/s 
Comput. steps 
Reject 
Error 

Model V2, n = 5, r = 0.6, 

CMR 

3.273 
4.5 x 10~ 3 1 

-
7.6 x 102 

9.6 x 1 0 " 1 3 

9.0 x Ю - 4 

0.008 
103.9 
194 
254 

-

At control: HV, 

BMR 

3.8 x 10" 
3.8 x 10" 
1.1 x 10" 
3.2 x 10' 
1.2 x 10" 

-
-

726.1 
1001 
2927 

-

BMR 

3.148 
5.3 x 

1.5 x 
3.8 x 
9.9 x 
0.173 
199.1 
447 
622 

ATOL = 

- 3 0 * 

- 3 0 * 

- 3 

-8 

-41 

MICH3 

3.152 
10~ 4 4.8 x 10" 

-
102 4.4 x 102 

Ю - 4 0 1.0 x 10" 
1 0 " 4 7.3 x 10" 

0.006 
42.5 

207 
0 

-

0.001, ímax = 14760. 

MICH3 

3.273 
4.1 x 10" 3 1 

-
1.4 x 103 

2.0 x 1 0 - 1 3 

9.1 x 10" 4 

0.066 
48.2 
101 
314 

-

relative error tolerance: 10 4 , tmax = 14760. 

SIMEL 

3.149 
" 4 2.1 x 10" 4 

-
! 1.6 
" 3 1.0 x 10" 3 

" 6 6.8 x 10" 4 

0.384 
1407.3 
3864 

0 

-

SIMEL 

3.272 
1.8 x Ю - 3 0 

-
1.1 x 102 

9.9 x 10~ 4 

0.0 
0.160 
1128.6 
1305 

0 

-

IMEL 

3.147 
9.7 x 1 0 " 4 

8.4 x 101 

1.0 x 10~3 

1.4 x 1 0 " 3 

0.332 
63.0 

305 
0 

-

IMEL 

3.273 
7.0 x Ю - 3 1 

-
2.0 x 102 

8.1 x 1 0 " 1 3 

6.9 x 1 0 " 4 

0.097 
122.5 
234 
140 

-

* Computations terminated prematurely. 

T a b l e 5. Numerical Results with Different Methods 

C ( l , i m a x ) - 1 0 3 

Cmin ' 103 

t- break 
Ai-final 
Ai-min 
RE relative to SIMEL 
Error in balance/% 
Comput. time/s 
Comput. steps 
Reject 
Error 

CMR 

1.0 X 1 0 ~ 3 9 * 
1.0 x 1 0 ~ 3 9 * 
2.8 x 1 0 " 4 

1.8 x 1 0 " 1 9 

2.2 x 1 0 - 2 1 

-
-

612.0 
1001 
6040 

-

BMR 

1.7 x Ю - 3 4 * 
1.7 x 1 0 ~ 3 4 * 
2.8 x 1 0 " 4 

1.0 x 1 0 " 1 9 

2.9 x 10~ 4 2 

-
-

115.7 
135 
533 
OWERFL 

MICH3 

1.0 x 1 0 " 3 9 * 
1.0 x 1 0 ~ 3 9 * 
3.3 x 10~ 4 

5.4 x 10~ 2 3 

5.4 x 10~ 2 3 

-
-

221.5 
1001 
1298 

-

SIMEL 

3.285 
0.0 

-
6.5 x 101 

1.0 x 10~ 3 

0.0 
0.138 
1575.3 
1436 
0 

-

IMEL 

1.0 x 1 0 " 3 9 * 
1.0 x 10~ 3 9 * 
3.4 x 10~4 

3.2 x Ю - 1 9 

6.4 x Ю - 2 2 

-
-

610.1 
1001 
6101 

-

Model V2, n = 5, r = 0.5, Ač control: HV, relative error tolerance: 1 0 - 4 , 
* Computations terminated prematurely. 

ímax = 14760. 

values of the ODE Jacobian in the vicinity of the sin­
gular values, can also be employed only with a very re­
stricted integration step. Otherwise, they usually lead 
to the negative values of С 

In both cases, there is a real possibility of overflow 
of the power in operations with the elements of the 
Jacobian. 

Such problems occurred in the use of all the above 
methods, including the code RRSTIFF. The value of 
the power r appeared as the most important factor in 

this respect. For r = 0.873, the mentioned methods 
are still more efficient than SIMEL. However, when r 
= 0.625 SIMEL works more effectively than the cur­
rent methods. This value is also a limit at which the 
code RRSTIFF failed. When r < 0.625, all the algo­
rithms, except SIMEL, provide negative values of С 
or converge extremely slowly by the Newton iteration. 

Figs. 1 and 2 show the computed model solu­
tions along with the experimentally determined break­
through curve [17]. The computations were performed 
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Fig . 1. Comparison of the predictions of the model V2 with the 
experimental break-through curve: <g> measured values. 
The solid line shows the model predictions. The model 
equations were solved by SIMEL for tg = 0.23 s, ts = 
20003 s, and C 0 = 0.0033. 

С • 10 -

Fig . 2. Transient gaseous concentration profiles within the bed 
as predicted by the model V2. The values of the model 
parameters and the other conditions are the same as in 
Fig. 1. 

on an AT personal computer. It is apparent that the 
computer time is considerably overestimated as the 
respective routines were carried out in "QUICK BA­
SIC" (except for RRSTIFF). Moreover, a number of 
additional procedures were included for testing. 

It was necessary to test the transition of the con­
centrations to negative values. At this moment, the 
computation is terminated (the code RRSTIFF) or 
the run can be repeated with a smaller integration 
step. However, this implies that the step size has to be 
controlled also with respect to this phenomenon, in ad­
dition to the local approximation error and the scheme 
stability. For the sake of objectivity of the comparison, 
this procedure was also employed. Some information 

is also given in Tables 1—5 on the behaviour of the re­
spective methods in the course of computations. Aside 
from the values of С at w = 1 for imax = 14760, rel­
ative error, balance error, computation time, and the 
number of the integration steps, the tables also pro­
vide information on Cmin, number of step reductions 
when С < 0, and an indication of "error". A moment 
of time is also mentioned when a given method failed. 

Tables 1—3 show the results for the power г = 
0.87 and the different strategies of control of the in­
tegration step. As apparent, all the tested algorithms 
are more effective and more accurate than the method 
SIMEL in this case. The line "reject" indicates that at 
the method BMR, the time step has to be controlled 
also with respect to possible occurrence of the nega­
tive values of C. The relative error, RE, is related to 
the results provided by the code RRSTIFF. 

Table 4 gives solutions for г = 0.6. Since the code 
RRSTIFF failed in this situation, the relative error, 
RE, is given with respect to the values computed by 
the scheme SIMEL. All the other schemes- require re­
peated reductions of the time step. The method BMR 
was not continued after 1000 steps, as the needed in­
tegration step was extremely small and the integra­
tion process practically ceased. Table 5 illustrates the 
situation for r = 0.5. All the methods had to be ter­
minated for the necessity of an extremely small step 
at which the integration was not feasible. The scheme 
BMR ends with overflow during evaluations of one of 
the Jacobians that are employed in this method. 

A possibility to substitute a very small, positive 
value of С when the Newton iteration method pro­
vides negative concentrations was also considered. 
Such a more or less incorrect intervention may be 
sometimes used, but it cannot be generally recom­
mended. The process can converge very slowly, it can 
lead to the values very distant from the true solution 
or even oscillates. 

C O N C L U S I O N 

Needs for the integration of stiff ODE and PDE 
systems eventually lead to the problems with the iter­
ation solutions of simultaneous sets of the nonlinear, 
algebraic equations. This occurs even when a suffi­
ciently stable difference scheme is chosen. The stabil­
ity and the good approximation of a given difference 
representation, constitute a necessary but not suffi­
cient condition for the successful numerical solving of 
the stiff differential equations. 

The relatively simple, semi-implicit method SIMEL 
has been developed for ODE and PDE systems at 
which the integration step has to be chosen with re­
spect not only to the stability and the approximation 
of a given scheme, but also to a possibility that the 
results can fall outside of the definition region. Such 
situations can occur during the iteration solutions of 
nonlinear systems resulting from the most of schemes. 
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The scheme SIMEL is based on the implicitness of the 
variables occurring separately in the respective equa­
tions of a system. Then, the resulting nonlinear alge­
braic equations can simply be solved by interval halv­
ing. The implicitness of the respective ODE equations 
in combination with interval halving ensures that the 
computed results lie within a given definition region. 

The scheme SIMEL is a method of the first order 
the accuracy of which is generally less and the num­
ber of integration steps is larger than with the tested 
schemes of other authors. However, in some situations 
(r < 1), quite common in reaction engineering, the 
overall effectiveness of SIMEL can be better than that 
of the current schemes. 

With respect to the accuracy of results, the step 
control strategy HV appears as correct. The BE strat­
egy affects only the local error with respect to the so­
lution provided by the implicit Euler scheme. The ВС 
procedure controls the overall balance of the modelled 
process. Good balance agreement is a necessary con­
dition, but, in a rigorous sense, it does not have to be 
a sufficient condition for good approximation. How­
ever, our experience indicates that this strategy usu­
ally provides good results as for example in parameter 
searching. 

Intermediate accuracy of the SIMEL scheme is 
given by the lower-order approximation and by an 
error committed by replacing the normal implicit 
scheme with the semi-implicit pattern. Relatively less 
efficiency in the instance of a small ODE system is 
given by the fact that the interval halving is less ef­
fective than the Newton iterations provided that the 
Newton method converges. 

The method SIMEL in combination with different 
strategies for the integration step control solved sat­
isfactorily the reaction models. The use of the stan­
dard methods often led to difficulties that could not 
practically be removed. The authors believe that this 
scheme can be employed in a number of similarly ori­
ented problems. 

A P P E N D I X 

Analysis of t h e P r o b l e m 

The models of unsteady-state reaction of a gas 
with solids involve the reaction term in the form 
Я(С, X) = к • Cr • ( X m a x - X)5. The models are repre­
sented by highly stiff ODE or PDE systems that might 
apparently be solved with the use of some efficient 
conventional method or code. However, the source of 
difficulties is a fact that the power of С or (Хтлх - X) 
is less than unity {i.e. r or s < 1). Values of the sought 
reactive concentrations С lie in the interval (0,1) and 
for С —• 0+, the elements of Jacobian of the right-
hand side of ODE with terms Cr~1 are not limited 
in their absolute value and norm of the Jacobian in­
creases without any limitation. This results in very 

serious consequences for the use of the conventional 
methods that are based on evaluating the Jacobian 
regardless of their high stability. Iterative solutions of 
the nonlinear algebraic equations resulting from the 
implicit difference schemes converge extremely slowly 
in the vicinity of a singularity. Moreover, the transition 
can occur outside of the definition region of a variable. 
Conventional semi-implicit methods based on the local 
linearization of the corresponding ODE in the vicinity 
of singularities of the Jacobian elements require the 
use of a very small time step At. Otherwise, they lead 
again to values out of the definition region. This fact 
is particularly serious at the pseudosteady states when 
the system is close to the singular values and the com­
putational process is very sensitive to round-off errors. 

In light of the above arguments, an effort is justi­
fied to employ somewhat unconventional methods of 
the SIMEL type. It should be noted that these meth­
ods are of the first order with respect to the approx­
imation and the analysis of stability of their schemes 
can be considerably complicated. 

It is a well-documented fact that the orders of reac­
tion less than unity occur very frequently in reaction 
engineering. In other words, there is a good reason for 
an alternative approach to the solving of models in the 
vicinity of the singularities of the Jacobian elements 
for the corresponding ODE. 

Approximat ion by t h e S I M E L Scheme 

Let the ODE system be 

y'(t) = /foi( t) , . . . , yn{t)l i = 1, . . . , n; t G (0, oo) 

with an initial condition 7/(0) = yoi or in the vector 
form 

y ' W = f ( y ) У(0)=Уо (Al) 

where у = (т/i,... ,yn)
T-

In case of the linear ODE system we have 

y'(*) = A - y + b A = (ai,j); z,j = l , . . . , n 

Let us denote the Jacobian of the right-hand side of 
ODE as J(f), i.e. the matrix J(f) = (dfi/dyj); i,j = 
1,... ,n and A(A) are the eigenvalues of the matrix 
A. Furthermore, I is the unit matrix, N is a matrix 
the elements of which are units and o(x) is the column 
vector constituted by the symbols 0(x). We will deal 
with the systems for which the real components of 
the numbers A[J(f)] are negative, i.e. Re(A) < 0. It 
is assumed that the elements of the Jacobian J(f) do 
not have singular points within the region of solution. 

Difference scheme 

If we introduce a vector function g[y(£)> Щ by 
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9i[y(t),h] = fi[yi(t),.. .,yi(t + Л),. . . ,yn{t)) 

then, the scheme SIMEL is given as 

y(t + h) = y(t) + h.g[y(t),h] (A2) 

where h is the chosen integration step. 

For the linear ODE system, the scheme can be writ­
ten in the vector form as 

y(« + Л) = y(t) + Л • A 0 • y{t) + h . Ai • y(f + Л)+ 
+ b (A3) 

where Ai is the diagonal matrix with the elements a;,; 
and the matrix A is defined by 

A 0 = A - Ai 

By the first-order expansion of the vector function 
y(t) at the point t + h we get after arrangement 

y(t + h) = y(t) + h • y'(t + Л) + o(/i2) 

Since the function у is the solution of the system 
(AI), we can write 

y{t + h)= y(í) + h • f[y{t + h)] + o(/i2) (A4) 

If we denote Ay (t) = y(t + h) - y (í), then it follows 
from eqn (A4): Ay(t) = o(ti). Then, with the use of 
the theorem on the increment of a function of more 
independent variables we have 

f [y(í + h)} = g[y(ť), h] + (N - I) • J[f (()] • Ay(ť)+ 

+o(/i2) 

On substituting in eqn (A4) and with respect to 
the property of the increment Ay(ť) we finally get 

y(t + h)=y(t)+h-g[y(t),h]+o(h2) 

It follows from the comparison with eqn (A2) that 
SIMEL is a scheme of the first order. 

Stability 

Stability analysis will be performed for the testing 
linear system 

У' = A • у 

For further consideration the matrix C(h) is de­
fined as 

C(Ä) = ( I - Ä . A i ) - 1 - ( I + A-A0) 

The matrix С is defined for all h > 0 provided that 
all the eigenvalues A(Ai) < 0. This requirement will 
be considered as a condition necessary for the appli­
cation of the SIMEL scheme to a given problem. Prom 
eqn (A3) we get 

y(t + h) = C(h)-y(t) 

The condition for scheme stability is then 

|А[ОД] | < 1. 
Prom the standpoint of the scheme usefulness, it is 

desirable to estimate the conditions necessary for the 
scheme to be A-stable or even L-stable. 

When h -> со, C(h) -> C ^ = - A " 1 • A 0 . On 
discussing the situation when n = 2, we can get the 
combinations of results such as follows: 

a) Provided that the matrix A hats only the real 
eigenvalues and all A(A0) are real, then the scheme is 
A-stable. 

b) If either of the above conditions is not met, the 
scheme can still be A-stable. It is always, at least lo­
cally stable. 

In other words, the A-stability of SIMEL is guar­
anteed for the ODE systems for which "residue of the 
system" defined by the matrix Ao does not contain 
the oscillating components. 

The authors realize that the general analysis of the 
scheme stability should include situations when n > 2. 
Our numerical experiments with SIMEL suggest that 
the above conditions of stability can also be applied 
in such cases. 

S Y M B O L S 

a left-hand point of interval 
A matrix with elements aij 
b right-hand point of interval 
b column vector of elements bj 
ВС control of time step by "balance corri­

dor" 
BE control of time step by "backward Euler" 
BMR difference scheme "backward mid-point 

rule" 
С mole fraction of SO2 in gas phase 
C 0 inlet gas mole fraction 
Cmin minimum mole fraction during computa­

tions 
C w exit gas mole fraction 
CMR difference scheme "classical implicit mid­

point rule" 
С (1, t max) exit gas mole fraction at i m a x 

error indication of possible overflow of values 
of Jacobian 

f(y) vector of functions of vector y, f = 

( Л , / 2 , . . . , / n ) ; fi(y) = /t(ž/i,-..,2/n)T; 
г = 1,.. . ,n 

F cross-section of reactor/cm2 

H distance above gas distributor/cm 
Hi height of expanded bed/cm 
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HV At control by step halving 
h integration step 
I unit matrix 
IMEL difference scheme "implicit Euler" 
J(f) Jacobian of the ODE system, matrix 

J(f) = (dfi/dyj), i J = l , . . . , n 
MICH3 semi-implicit Runge—Kutta method 
N matrix of units, mj = 1 for i,j = 

l , . . . , n 
N number of interval halving 
n number of division of interval w G (0,1) 
n s amount of substance of sorbent/mol 
NAE nonlinear algebraic equation(s) 
NC noncontrolled time step 
ODE ordinary differential equation(s) 
0(h) function for which it holds 

hmh-00(h)/h = 0 
o(x) column vector of symbols 0(x) 
PDE partial differential equation(s) 
R(C,X) reaction r a t e / s - 1 

Re(A) real component of complex number A 
RE relative error 
reject number of At shortening forced by tran­

sition of С to negative values 
RRSTIFF computational code developed at the De­

partment of Chemical Engineering, Tech­
nical University Delft, the Netherlands 

r power to which С is raised in the reaction 
rate equation 

5 power to which ( X m a x — X) is raised in 
the reaction rate equation 

SIMEL semi-implicit Euler scheme, this paper 
t time/s 
r-break time of interruption of computation on 

external intervention or on "error"/s 
At time step/s 
Д^тах maximum time step/s 
fg mean residence time of gas in bed/s 
U = TIS/(FUPGCQ) stoichiometric time/s 
U superficial gas velocity/(cm s _ 1 ) 
w = H/Hi relative distance above the distributor 
Aw = 1/n spatial step 
X conversion of sorbent 
I m a x maximum conversion of sorbent 
xn n-th approximation of root 
x^_ true value of root 
X balance integral given by eqn (3) 
yo column vector of initial conditions for 

ODE 
y(t) real function of real variable 
y(t) column vector of solution of the ODE 

system 

A(A) eigenvalue of matrix A 
PG density of gas phase/(mol c m - 3 ) 
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