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Classical point estimates of parameters of location, scale, and distribution shape are measures 
characterizing the sample distribution. More meaningful are interval estimates which for a specified 
degree of assurance cover an unknown value of the population parameter. Routine data treatment 
comprises the exploratory data analysis, the test of basic assumptions about a sample, and a calcu­
lation of the classical and robust estimates of the parameters of location, scale, and shape. For an 
analysis of small samples the Horn procedure of pivot measures is more suitable. Procedure of the 
univariate data treatment is demonstrated on the calibration of a pipette. 

After the exploratory data analysis, the statistical 
analysis is a next step. With small samples the statis­
tical characteristics are estimated directly, but with the 
large ones the data are divided into classes and the 
statistical characteristics of each class are estimated. 

Univariate samples come from population with an 
unknown probability distribution. An univariate popula­
tion is considered to be a set in which only one proper­
ty is studied, and one quantity is measured. The popu­
lation is characterized both by measures of the location, 
i.e. the level at which the quantity values vary, and by 
the degree of the dispersion (or spread, scatter, scale, 
variability) of the quantity of interest, and as such by 
the shape parameters of distribution. As the large pop­
ulation of all measured quantities is rarely available the 
representative random sample (or the sample) of few 
measurements is analyzed. 

The sample is characterized by information about 
the mean value of the sample elements and their vari­
ability around this mean. Statistical characteristics of 
location, spread, and shape are called the sample char­
acteristics. From these sample characteristics, the 
measures for the population are derived. 

The main purpose of chemometrics experimenta­
tion is to draw inferences about a population from sam­
ples of the population. We can identify three different 
types of inferences, namely: /. the point estimation, 2. 
the interval estimation, 3. the hypothesis testing. 

Estimation of a single value for a parameter is 
termed the point estimation. The interval estimation is 
concerned with estimation of interval that will include 
the population parameter with a specified probability. 
An interval estimate is more informative than a point 
estimate. Interval estimation is closely related to hy­
pothesis testing. 

This paper brings the classical point and interval 
estimates of parameters of location, scale, and distri­
bution shape. 

THEORETICAL 

Point Estimates 

Data samples are classically characterized by the 
sample arithmetic mean x and the sample variance 
s2. These estimates can be used for characterization 
of data sampled from unknown distribution. If the sam­
ple comes from a symmetric population distribution with 
the mean ju, variance a2, and curtosis g2, it can be 
proved that 

E(x) = p (1) 

2 

D(x) = — (2) 
n 

and 

E(s2) = аг (3) 

»О - т[*-£т] «> 
In addition to the sample arithmetic mean and the 

sample variance, other parameters of location and 
scale can be used: the sample modus (or the modus 
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only) xM is the most frequently found element value in 
the sample. The sample quantiles are descriptive sta­
tistics from the exploratory data analysis and are some­
times used to supplement the information obtained from 
the mean and the variance. Sample values xv ..., xn 

arranged in order of ascending magnitude, x(1) < x{2) < 
... < x are called the order statistics. The p-th quan-
tile (or the percentile) is defined to be the value of x 
below which p % of the sample value lie. The p-th quan-
tile separates the order statistics into two parts so that 
each contains the required percent of the sample ele­
ments, p % and (100 - p) %. 

The sample median xQ5 is the quantile that sepa­
rates order statistics into two parts: 50 % of the ele­
ments lie below x0 5 and 50 % of the elements lie above 
J?05. The sample median for odd sample size has the 
form 

X 0.5 " X(k) (5) 

Often the condition of constant variance of all sam­
ple elements is not maintained. If each x.has a normal 
distribution with variance a2, the statistical weight is 
calculated as wt= 1/a2. Instead of sample mean x, the 
weighted sample mean xw is computed as follows 

2>/W/ I>,>f 

2>/ 2V"? 

The variance of weighted mean is 

ok) = IT— 
2№ 

(10) 

(11) 

/ = 1 

where k= (n+ 1)/2. For an even sample size, it is 

*0.5 "~ 

X(k) + * ( * + l) (6) 

If the relative error has a constant value, ô = olx = 
constant, then a2 = xf ô2. Then w.= 1/x.and the sample 
mean can be calculated as 

where/r= л/2. 
The 25th and 75th percentiles may be called the 

first (or lower) quartile and the third (or upper) quartile 
of the sample. The median represents the maximum 
likelihood estimate of location for the Laplace distribu­
tion. For this distribution the variance of median is ex­
pressed by 

x... = 

with variance 

2>, 
/ = 1 

/ = 1 

(12) 

DL(
xo.s) = f " 

2n 
(7) 

For the normal distribution, however, the sample 
median is not efficient (see Table 1). For the rectangu­
lar distribution, the efficient estimate of location is the 
midsum xp defined by 

- _ * ( 1 ) + X ( n ) 
p ~ (8) 

where x(1) is the smallest and x{n) the largest element of 
an ordered sample. The variance of the midsum esti­
mate for the rectangular distribution is defined by 

0 f a ) = 
2У*1 

(13) 

The dispersion parameters describe the degree of dis­
persion (scale, spread, variability or scatter) of the pop­
ulation elements. The range is one of the measures of 
spread which represents the difference between the 
largest and the smallest value of sample. The inter­
quartile range RF is the quantile estimate of population 
standard deviation a defined as 

RF = 0.7413 (x a 7 5 - x a 2 5 ) (14) 

0 R ( * P ) = 
6a 2 

( л - 1 ) ( " - 2 ) 
(9) 

Index R denotes the rectangular distribution. The vari­
ance of Xp for normal distribution is much higher. 

where x075 is the upper and x025 the lower quartile. 
Table 1 surveys the sample estimates of location 

and dispersion, with their variances, efficiency, and dis­
tribution. Sample estimates are for sample size n, and 
the sample comes from a population with normal dis­
tribution N (//, cř). 
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Table 1. Estimates of Location and Dispersion for Sample of Size 
n from a Population with Normal Distribution N(a, a) 

Parameter Estimate Variance Efficiency Estimate 
estimate distribution 

Mean /u o2ln 1 N(M, <r) 
aht/2n 0.63 Ufa, O2) 
(гл2/(24 In ri) 24 In n/(jt2n) N(w, a2) 

Variance o2 s2 

Standard a 
deviation o s 

R 
d 

* Biased estimate. 

2ďV(/7-1) 

<ŕl2n 
о*/(2(л-1)) 
« 1.36 a2//? 
а2/((я - 2)rí) 

1 

« 1 * 
1 

« 0.368 
= 0.876 

Nía2, D(a2)) 

N(c7, D (a)) 

Another measure of dispersion is the mean devia­
tion d defined by the equation 

d = J * 1 n 

(/5) 

where the factor л/л/2 ensures that for normal distri­
bution the value of d approaches that of the standard 
deviation o. 

The widely used coefficient of variation ö (denoted 
CV) also known as the relative standard deviation srel 

(denoted RSD) is given by 100 olfx and may be esti­
mated by the relation 

3 = * (16) 

Variance of ô is approximately equal to 

D(Ô) = ť 11Ľ&ŽŔ 
V ; 2/|(л-1) 

U7) 

The error <5, expressed in percents, is also called a 
relative error. Relative errors are frequently used in the 
comparison of the precision of results with different units 
or magnitudes, and are again important in calculations 
of error propagation. 

To characterize the shape of a distribution, the 
skewness and curtosis are used. Skewness g^ is a 
measure characterizing symmetry, which is equal to 
zero for a symmetrical distribution. The positive val­
ues of дЛ indicate smaller scattering of lower values of 
elements x. than of the larger values and the negative 
values of дЛ indicate the opposite case. The moment 
estimate of skewness is defined by 

_ \ 3 
Vn 2(*/ -*) 

01 
/=1 

Ž(*/ - xf 
/ = 1 

3/2 (18) 

Its asymptotic variance is 

(n + l)(/7 + 3) 
(19) 

The curtosis characterizes the peakedness of the 
distribution near a modal value and provides a picture 
of the shape of the distribution peak. For higher values 
of curtosis than 3, the distribution has a sharper peak 
than the normal distribution while a flat shape is indi­
cated for curtosis lower than 3. The moment estimate 
of curtosis is defined by 

- \ 4 n lixi - x) 
92 = 

/=1 

- \ 2 
2ixi - X) 
/ = 1 

(20) 

(21) 

Its asymptotic variance has the form 

D ( } _ 2 4 » ( . - 2 ) ( Я - 3 ) 
V 2) (/7 + 1)2(л + 3)(/7 + 5) 

When a point estimate of any parameter is deter­
mined, the variance of the parameter must also be 
calculated. To achieve the same "precision" of esti­
mates when less effective estimates are used, a greater 
number of measurements n should be used. To achieve 
the same parameter precision for data of normal distri­
bution, for example, the calculation of median x05 

needs 1.6 times more measurements than the appli­
cation of arithmetic mean x 

For samples coming from a population of normal 
distribution the random variable 

t = 
x - /г Я (22) 

has the Student distribution with (/7-1) degrees of 
freedom. Also, the random variable 

2 _ (n-i)s2 

(23) 
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has the ^-distribution with (n-1) degrees of freedom. 
The random variable t and x a r e mutually indepen­
dent. For sufficiently large samples (n ̂  40) from the 
normal distribution, for some estimate 6 of parameter 
0, the random variable 

u - Щ {24) 

has an approximately standard normal distribution N (0, 
1). Eqn (24) is asymptotically valid for any estimate 0. 
with variance D (в) determined by the maximum like­
lihood method, and for any theoretical distribution f(x, 
0). 

It is clear that the distribution of estimators is con­
nected with sample distributions like the Student and 
X2 ones. The Student and ^-distributions are both 
among basic sample distributions which depend on 
degrees of freedom v. For various values of degree of 
freedom v, the quantiles of Student distribution and 
^-distribution may be found in statistical tables. 

Interval Estimates 

More meaningful statement than the point estimate 
is the confidence interval which is calculated from the 
sample estimators. It includes the value of the popula­
tion parameter within the interval limits, termed confi­
dence limits, for a specified degree of assurance, called 
the confidence coefficient. Here, the confidence limits 
are random variables dependent on the sample. 

The parameter of location is then described not by 
one value x but by two numerical values L, and L2. It 
is expected that the confidence interval (Lv L2) will in­
clude the unknown population parameters with prese­
lected probability (1 -a). The degree of trust associat­
ed with the confidence statement expresses the degree 
of certainty or reliability (1 - a) about the unknown pop­
ulation parameter 0 

Р{Ц <0<Ь,) = "\-а (25) 

where a is termed the significance level; the value 
chosen fora is usually 0.05 or 0.01. It is useful to know 
that a) the confidence interval is small if the variance 
of estimate D (в) is small; b) a large sample size n 
gives a small confidence interval (Lv L2); and c) high­
er degrees of certainty (1 - a) give broader confidence 
intervals (Lv L2). 

Confidence interval (Lv L2) is referred to as a two-
tailed interval, but one-tailed intervals may be also used 
in chemical laboratory. One-tailed confidence intervals 
can be a) the left-side or lower-tail interval (L2, oo), or 
b) the right-side or upper-tail interval (-co, /.,). 

Let us find the confidence interval of the population 
mean of the normal distribution N(ju, a). Let x be the 

mean of a sample of л observations on a normally dis­
tributed random variable x with unknown mean fi and 
known variance ď\ Then 100 (1 - a) % confidence 
interval L^ 2 for/г may be found from 

* - < W 4= * V * x + ил_ф 4= (26) 
у/П V/7 

where uUa/2 is 100 (1 -a) % quantile of the standard­
ized normal distribution (e.g. for u0975 = 1.96 LA 2 = x 
±1.96a/VÄ7). 

In cases where the sample size n is not large enough 
and the variance cř is not known, the confidence limit 
for/* may be found from eqn (26), but using quantiles 
for Student /-distribution instead of those for the nor­
mal one. The 100 (1 -a) % confidence limits LA 2 are 
then given by 

* - W ( v ) ^ < /г < X + ŕ W 2 ( v ) - p (27) 
ып ып 

where v = n- 1 is the number of degrees of freedom, 
t,_d2(v) is the 100 (1 - a/2) % quantile of the Student 
distribution. For large sample sizes (n> 30) instead of 
^ ^ ( v ) the quantile u^_d2 can be used. 

According to eqn (24), the 100 (1 -a) % asymptot­
ic confidence interval of any parameter 0 may be ex­
pressed by 

0 - < W ^ Щ Z 0 < 6 + и,_а/г^Щ (28) 

The 100 (1 -a) % two-tailed confidence interval of 
the variance cr is given by 

Л 2 2 
VS о vs 

ГТ ^ о < - — - (29) 
*1-e/2 W Xa/2 П 

where %*_a/2(v) is upper and^/2(v) lower quantile of %2-
distribution, and v = n-1 is the number of degrees of 
freedom. 

Construction of a confidence interval depends on 
the population distribution from which the sample 
comes. For example, the variance of the median may 
be calculated from the relation 

An f (med) 

where /(med) is the value of the probability density func­
tion at the position of median. For Laplace distribution, 
/(med) = 1/(aV2) and therefore D(x05) = (r/2n, and 
the asymptotic confidence interval of the median is 
given by 
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X0.5 UA-a/2 

0.707 s 

~7Г~ < ii < x0s+u,_ai 72 
0.707 s 

X" 
(30) 

Eqn (50) is valid only if the sample size n is big enough 
for the median of the Laplace distribution to have ap­
proximately normal distribution. 

Analysis of Small Samples 

The analysis of small samples is not reliable and 
results are usually rather uncertain. Small samples are 
used in cases when experiment repetition is expen­
sive or scarcely possible. 

For n = 2, the statistical analysis is very difficult. If 
observations are close enough, the arithmetic mean is 
calculated. If observations do not agree, it is not possi­
ble to say which is the outlier. The 100 (1 -a) % confi­
dence interval of the mean/* may be calculated by an 
approximation 

x, +x„ 
-7" 

\хл - x0 хл +xn 
< p < + 7" 

\хл - x0 

(31) 

The critical value of Г depends on the distribution 
of data population from which the two values come. 
For the normal distribution it is Ta = cotg (па/2) and for 
a = 0.05 Ta is 12.71. For the rectangular distribution Г 
= 1/a-1,7.e. Г = 19, cf Ref. [1]. 

For n = 3 it is also difficult to use a statistical anal­
ysis. The calculation of the arithmetic mean x from 
two near observations is better than the use of the 
median from all three values. The 100 (1 - a) % confi­
dence interval of the mean ju is then calculated by an 
approximation 

i-K- s „ s -X+T:- (32) 

For the normal distribution,^* ~ l/Va-Зл/а/4 + ..., 
and when a = 0.05, T* is 4.30. For rectangular distri­
bution Ta = 5.74, cf Ref. [1]. 

For 4 < n < 20 a procedure based on order statis­
tics was introduced by Horn [1]. This is based on the 
depth which corresponds to the sample quartiles (the 
letter F). The pivot depth is expressed by HL = in\((n + 
1 )/2)/2 or HL = int((/i + 1 )/2 +1 )/2 according to which HL 

is an integer. The lower pivot is xL = x{H) and the upper 
one is xu = x{n+1_H). The estimate of parameter of loca­
tion is then expressed by the pivot half sum 

p = * L + * U (33) 

and the estimate of parameter of spread is expressed 
by the pivot range 

R Ĺ - XU " XL 

The random variable 

T_PL_ xL+xu 

RL 2{xu-xL) 

(34) 

(35) 

has approximately a symmetric distribution and its 
quantiles are in Table 2. 

The 95 % confidence interval of the mean is ex­
pressed by pivot statistics as 

PL-^AWÁ") * t* * I + ^ L W S И (36) 

and analogously hypothesis testing may be also car­
ried out. For small samples (4 < n < 20), the pivot 
statistics lead to more reliable results than the applica­
tion of Student's Mest or robust ttests. 

Table 2. Quantile tL,_a(n) of the ^-Distribution [1] 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

^-a =0.90 

0.477 
0.869 
0.531 
0.451 
0.393 
0.484 
0.400 
0.363 
0.344 
0.389 
0.348 
0.318 
0.299 
0.331 
0.300 
0.288 
0.266 

0.95 

0.555 
1.370 
0.759 
0.550 
0.469 
0.688 
0.523 
0.452 
0.423 
0.497 
0.437 
0.399 
0.374 
0.421 
0.380 
0.361 
0.337 

0.975 

0.738 
2.094 
1.035 
0.720 
0.564 
0.915 
0.668 
0.545 
0.483 
0.608 
0.525 
0.466 
0.435 
0.502 
0.451 
0.423 
0.397 

0.99 

1.040 
3.715 
1.505 
0.978 
0.741 
1.265 
0.878 
0.714 
0.593 
0.792 
0.661 
0.586 
0.507 
0.637 
0.555 
0.502 
0.464 

0.995 

1.331 
5.805 
1.968 
1.211 
0.890 
1.575 
1.051 
0.859 
0.697 
0.945 
0.775 
0.685 
0.591 
0.774 
0.650 
0.575 
0.519 

COMPUTATION 

/. When no preliminary information about data is 
available, the full exploratory data analysis (see Part I 
of this series) is applied. 

2. Analyzing any new data batch the basic assump­
tions about data are always examined using i) a test 
for sample homogeneity; ii) a test for sample normali­
ty; iii) a test for independence of sample elements; and 
iv) a test for minimal sample size (see Part II of this 
series). 

3. Analyzing routine data a knowledge of sample 
distribution is supposed and moreover distribution is 
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supposed to be normal and data elements should be 
homogeneous and independent otherwise the data 
transformation is applied (see Part III of this series). 

4. Classical point and interval estimates of param­
eters of location, spread, and shape, i.e. the sample 
arithmetic mean, the sample variance (and related 
sample standard deviation and coefficient of variance), 
the skewness and curtosis sufficiently describe corre­
sponding population the sample of medium size comes 
from. 

5. For analysis of small samples the measures of 
location and spread are calculated by the Horn proce­
dure being based on the pivot halfsum and the pivot 
range. 

1.ÜU 

У 

0.40 

0.20 

0.00 

I I I 
a 

• 

• 

~ • 

• 

~ l I I 

I I I 

тттшшшшт m 

ítVtf*. 

-Lib -
-о- -

I I I " 
9.90 9.94 9.98 x 10.02 

SOFTWARE 

Module Univariate Data Analysis from the package 
ADSTAT contains procedures for an estimation of sam­
ple location, scale, and distribution shape. These pro­
cedures represent a part of programs for confirmatory 
data analysis of large and small samples. 

RESULTS 

Study Case 1. Calibration of a pipette, with large sam­
ple size 

The pipette of volume 10 cm3 was calibrated by 
weighing the water delivered and 32 measurements 
were obtained. The point and interval estimates of the 
real volume of the pipette should be determined. 

Data: the pipette volume l//cm3: 9.9889, 9.9820, 
9.9656, 9.9940, 9.9877, 9.9865, 9.9755, 9.9820, 

9.9848, 9.9914, 9.9905, 9.9726, 
9.9889, 9.9832, 9.9923, 9.9877, 
9.9666, 9.9903, 9.9666, 9.9713, 
9.9723, 9.9999, 9.9887, 9.9921. 

Solution: The first step of the univariate data treat­
ment is the exploratory data analysis. The dot diagrams 
and the box-and-whisker plots for original data (n = 
32) in Fig. 1a exhibit one very significant lower value 
and one higher value which can be understood as the 
outliers in sample. The probability density function (Fig. 
1 b) and the quantile plot (Fig. 1 c) shows that the distri­
bution is rather skewed to higher values and that the 
assumption of normality is not fulfilled either when using 
classical x and £ or robust (median) characteristics. 

The point estimates of location, spread, and shape, 
x = 9.9807 cm3, s = 0.0147 cm3, skewness дл = - 2.45, 
and curtosis д^^ЛЛМ prove that a distribution shape 
is skewed to higher values (дл < 0) and exhibits a sharp 
peak (g^ > 3). Therefore, the sample mean and stan­
dard deviation cannot be taken as the final values and 
examination of assumptions about the data is carried 
out: 

9.9794, 9.9184, 
9.9661, 9.9857, 
9.9779, 9.9936, 
9.9762, 9.9840, 

50.00 

40.00 

30.00 

20.00 

10.00 

0.00 

I 

I 

I I I 
b 

I I I 

I I I 

/ \ 

/ I 

/ / \ l 

// \ 

I I I 
9.88 

0.00 

9.92 9.96 10.00 

0.40 0.80 

Fig. 1. Exploratory data analysis of the original sample: a) the dot 
diagrams and the box-and-whisker plots, b) the plot of the 
probability density function (sharper curve for robust and 
flatter one for classical estimates), and c) the quantile plot 
(upper curve for robust and lower one for classical esti­
mates). 

a) Data are independent of the time from the test 
criterion tn = 0.19 < /0975 (32 + 1) = 2.035; 

b) Testing sample skewness and curtosis, C, = 
185.7 reaches a higher value than the quantile^ 95(2) 
= 5.992 so the sample distribution is not Gaussian (nor­
mal); 
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c) Because the value x, = 9.9184 cm3 lies outside 
modified external hinges l/L

# = 9.9407 cm3 and Vj = 
10.0230 cm3, хл is a significant outlier and should be 
excluded from the sample. Estimates of location, 
spread, and shape of the resulting new sample are: x 
= 9.9827 c m 3 , s = 0.0094 cm3, дл = - 0.42, and £> = 
2.22. 

After exclusion of two outliers, x(1) = 9.9184 cm3 

and x{32) = 9.9999 cm3, EDA plots (Fig. 2a—c) indicate 
no outliers in a sample and the distribution is closer to 
the normal one. The resulting sample is described by 
statistics: x = 9.9821 cm3, s =0.0090 cm3, ^ = -0.54, 
and g? = 2.02 which can be taken as final. 

Classical and robust statistics of the original sam­
ple (n = 32) are in Table 3. The classical arithmetic 
mean x is also calculated for the sample after elimi­
nation of one (/7 = 31) or two {n = 30) outliers. 

Table 3. Point and Interval Estimates of Location 

Parameter 

Mean x, n = 32 
Mean x , /7 = 31 
Mean x, n = 30 
Median xQ , n = 32 

Estimate 
£ /cm 3 

9.9807 
9.9827 
9.9821 
9.9844 

Estimate 
a /cm 3 

14.67 x 10-3 

9.43 x 10-3 

9.02 x TO"3 

12.54 x 10-3 

95 % Confidence 
interval 

/ . / cm 3 

9.9754 
9.9793 
9.9788 
9.9791 

LJcm2 

9.9860 
9.9862 
9.9855 
9.9897 

It may be concluded that assumption of normality 
is not fulfilled because two outliers are in the sample. 
Excluding outliers the relative error of pipette volume 
decreases from 0.026 % for the original data (n = 32) 
to 0.016 % for reduced data (n = 30). The use of ro­
bust estimate median is equivalent to excluding out­
liers from the sample. Calibration of pipette leads to 
the fact that the real volume is less than the declared 
one of 10 cm3. 

Study Case 2. Calibration of a pipette, with small sam­
ple size 

The pipette of volume 25 cm3 was calibrated by 
weighing the water delivered and 7 measurements were 
obtained. The point and interval estimates of the real 
pipette volume should be estimated. 

Data: The pipette volume Wem3: 24.96439, 
24.97758, 24.96809, 24.97409, 24.96880, 
24.94759, 24.97119. 

Solution: The point estimates of location, spread, 
and shape are x = 24.9670 cm3, s = 0.0100 cm3, дл = 
- 1.25, and (£ = 3.64. Examination of assumptions 
about the sample data leads to the conclusions: 

a) The test criterion tn = 0.61 is smaller than the 
quantile t0 975(7 +1) = 2.306 and shows that the sample 
elements are independent. 

b) The criterion C, = 8.55 is higher than the quantile 
%Q95(2) = 5.992 so the sample has not a normal distri­
bution. 
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0.40 
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I 
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1 1 1 1 

» • • • W i l l i m t 
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т5 
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" l I I I 

1 ^ - 4 . 1 

/ > v \ -
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-

1 1 

9.97 9.98 9.99 10.00 

Fig. 2. Exploratory data analysis for the sample after elimination 
of two outliers: a) the dot diagrams and the box-and-whisker 
plots, b) the plot of the probability density function (sharp­
er curve for robust and flatter one for classical estimates), 
and c) the quantile plot (upper curve for robust and lower 
one for classical estimates). 

c) Outside the modified interval hinges l/J = 24.955 
cm3 and I// = 24.984 cm3 there is the value 24.94759 
cm3 (Fig. 3). 

The 95 % confidence interval of the mean is 

24.958 cm3 < fi < 24.976 cm3 
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Horn procedure for the small samples leads to the 
following statistical characteristics: the pivot depth HL = 
2, the lower pivot is x{2) = 24.96439 cm3 and the upper 
pivot is x{6) = 24.97409 cm3. From the pivot halfsum PL = 
24.9692 cm3 (eqn (33)), the pivot range RL = 0.0097 
cm3 (eqn (34)) and from Table 2 the quantile tL 0975(7) = 
0.72, the 95 % confidence interval of the mean can be 
calculated 

24.9622 cm3 < /* < 24.9762 cm3 

It may be concluded that for the small sample the 
pivot technique is more suitable. For a high precision 
of weighing, one outlier has a small influence on the 
estimate of the mean. Calibration of pipette leads to 
the fact that the real volume is less than the declared 
one of 25 cm3 
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CONCLUSION 

When in exploratory data analysis the tests of as­
sumptions about sample data confirm that the sample 
comes from the population of the normal distribution, 
classical estimates of parameters of location, spread, 
and distribution shape sufficiently describe the sam­
ple. Interactive data investigation by modules of AD-
STAT enables an easy determination of all classical 
estimates. 
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