11, 37 (1974).

.

- 43. Peytavin, S., Chandhuri, N. R., Cot, L., Avinens, C., and Maurin, M., *Rev. Chim. Miner.* 9, 323 (1972).
- 44. Meyer, J. and Aulich, N., Z. Anorg. Allg. Chem. 172, 321 (1928).
- 45. Tutton, A. E. H., Proc. R. Soc. London, A 118, 393 (1928).
- Mellor, J. W., A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 10, p. 868. Longmans, Green and Co., London, 1930.

Translated by M. Štulíková

Phase Coexistence in the System Na₂O-P₂O₅-ZrO₂

^aM. VLNA, ^bYU. PETROSYAN, ^aV. KOVÁR, and ^aJ. MAJLING

^aDepartment of Ceramics, Glass and Cement, Faculty of Chemical Technology, Slovak Technical University, SK-812 37 Bratislava

^bTechnical University of Yerevan, Teryana-105, Republic of Armenia

Received 7 December 1992

On the basis of the X-ray diffraction the phase compatibility of the system $Na_2O-P_2O_5-ZrO_2$ was determined at subsolidus temperatures (350–1200 °C). There are nine binary and three ternary phases present in the system. The phase compatibility diagram is presented.

The contribution presents basic study of the phase coexistence at subsolidus temperatures. The study relies on a knowledge of the phase coexistence in the binary subsystems: Na₂O—P₂O₅ [1, 2], Na₂O—ZrO₂ [3], and P₂O₅—ZrO₂ [4, 5], respectively. It is also based on the existence of ternary phases, which are present in the quasi-binary system N₃P—Z₃P₂ [6]. There are three compounds (NZ₄P₃, NZP, N₅Z₂P₃) in this phase diagram. The first of them is the end member of the solid solution at which the quaternary "Nasicon" (Na₃Zr₂Si₂PO₁₂) is constituted. The figurative points of solid solutions Na₅ – 4x Zr_{1+x}P₃O₁₂ (N₅Z₂P₃) (0.04 < x < 0.11) and of the phase ε [Na₇Zr_{0.5}(PO₄)₃] (N₇ZP₃) are located in this section, too.

EXPERIMENTAL

Following two ways of preparation of samples were used:

a) By the solid state reaction in which the homogenized mixtures of individual compounds in an agate mortar were used as starting powders. Following compounds were taken for preparation of powder mixtures: ZrO_2 , Na_2CO_3 , $NH_4H_2PO_4$, $NaH_2PO_4 \cdot 2H_2O$.

b) By the sol/gel procedure in which the precursor gel was obtained from a mixed and tempered solution. The solution with the desired ratio w_r of Na₂O, P₂O₅, and ZrO₂ was prepared volumetrically using 0.169 M-zirconium acetate, 0.353 M-NaNO₃, and 0.261 M-NH₄H₂PO₄.

All the chemicals used were of anal. grade.

Prepared powder mixtures were heated in the platinum crucible in an electric resistance furnace. The attainment of the phase equilibrium was checked by X-ray phase analysis. X-ray patterns were taken on the DRON-0.5, $CuK\alpha$ radiation. The interpretation of X-ray diffraction patterns was performed using the published data mainly [4, 5, 7–9].

RESULTS AND DISCUSSION

The results of the phase analysis of samples are presented in Table 1. In this table also the mole fractions of components and the heating schedules of samples are given.

The phase compatibility diagram was constructed using the obtained data (Fig. 1).

Only those ternary phases are present in the system, the figurative points of which lie on the tie line $N_3P-Z_3P_2$. All these compounds (as their structural formulae show) belong to orthophosphates.

On the orthophosphate join there exists also the phase ε the stoichiometry of which is close to

^{*}The chemical composition of individual compounds is expressed in a notation at which: $N = Na_2O$, $Z = ZrO_2$, $S = SiO_2$, $P = P_2O_5$. Then for example: $NZ_4P_3 = Na_2O \cdot 4ZrO_2 \cdot 3P_2O_5 = Na_2Zr_4P_6O_{24} = 2NaZr_2P_3O_{12}$.

Table 1.	Compositions of	Starting Mixtures,	Their Heating	Schedules,	and	Results of	Phase A	Analysis
----------	-----------------	--------------------	---------------	------------	-----	-------------------	---------	----------

Sample	x(Na ₂ O)	x(P ₂ O ₅) %	x(ZrO ₂) %	0100	<i>t/</i> h	Phase analysis results	
	%			<i>θ</i> /°C		Filase analysis results	
1	25	50	25	500	200	NP, ZP	
2	29.5	42.5	28	500	200	NP, NZ₄P₃	
3	44	46	10	600	200	NP, N ₅ P ₃ , NZ ₄ P ₃	
4	40	40	20	600	200	NP, N₅P₃, NZ₄P₃	
5	50	38	12	500	200	N₅P₃, NZ₄P₃	
6	35	35	30	600	200	N_2P , NZ_4P_3	
7	55.5	34.5	10	600	200	N_2P , NZ_4P_3	
8	50	17	33	800	200	γ -N ₃ P, Z	
9	65	15	20	800; 1000	150; 1	α -N ₃ P, NZ	
10	6	44	50	600; 1000; 1200	40; 90; 10	NZ ₄ P ₃ , ZP	
11	42.9	14.2	42.9	930	25	Z, α -N ₃ P	
12	31.3	18.7	50	900	20	Z, N_5P_3	
13	25	25	50	900	20	Z, NZP	
14	6.7	26.7	66.6	950	20	NZ_4P_3 , α - Z_2P	
15	5.6	38.8	55.6	880	25	NZ ₄ P ₃	
16	7.1	42.9	50	950	20	NZ ₄ P ₃ , ZP	
17a	20	60	20	480	35	ZP, NP	
17b	20	60	20	350	35	ZP, NP	
18	28.6	42.8	28.6	550	20	NZ₄P ₃ , NP, (ZP)	
19	60	10	30	950	20	NZ, N ₃ P, (Z)	
20	50	33.3	16.7	600	30	N_2P , N_5P_3	
21	53.8	30.8	15.4	600	30	N ₂ P, NZP	

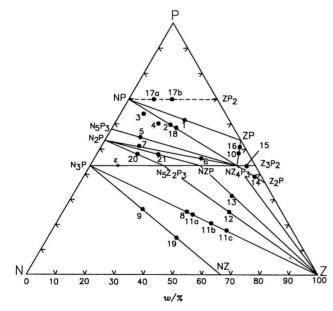


Fig. 1. Phase compatibility diagram of the system Na₂O–P₂O₅– ZrO_2 .

 $Na_7Zr_{0.5}(PO_4)_3$. This phase is stable only above the temperature 980 °C [6]. Its coexistence with N_2P or Z was not experimentally verified.

The sample No. 15 represents the single rhombohedral phase — a solid solution , with the end members NZ_4P_3 and Z_3P_2 , respectively [4]. The positions of diffractions are close to those found in the calculated diffraction patterns of NZ_4P_3 [9]. The join of two corresponding pyrophosphates (N_2P-ZP) does not represent the quasi-binary system.

The polyphosphate ZP_2 is up to now the only compound from the system $Na_2O-P_2O_5-ZrO_2$ with the content of P_2O_5 higher than 50 mole %. If it is supposed that in the area NP-ZP-P of the studied system no further phase is present, then ZP_2 should coexist with NP. Experimental verification of phase compatibilities in this area of the system is restricted by the low temperature of the melt creation and by the volatility of P_2O_5 at higher temperatures.

REFERENCES

- 1. Morey, D. W. and Ingerson, E., Am. J. Sci. 4, 242 (1944).
- Osterheld, R. K. and Bahr, W., J. Inorg. Nucl. Chem. 32, 2539 (1970).
- 3. D'Ans, J. and Loeffler, J., Z. Anorg. Allg. Chem. 191, 22 (1930).
- 4. Alamo, J. and Roy, R., J. Am. Ceram. Soc. 67, 80 (1984).
- 5. Malshikov, A. E. and Bondar, I. A., *Zh. Neorg. Khim.* 34, 1285 (1989).
- Milne, S. J. and West, A. R., J. Solid State Chem. 57, 166 (1985).
- Milne, S. J., Gard, J. A., and West, A. R., *Mat. Res. Bull.* 20, 557 (1985).
- 8. Hong, H. Y.-P., Mat. Res. Bull. 11, 173 (1986).
- Majling, J., Raninec, Š., and Ďurovič, S., Calculated Powder Diffraction Patterns for Anhydrous Phosphates. Veda, Bratislava, 1979.

Translated by J. Majling