Reaction of Cyclobuxine D with Epoxides

${ }^{\mathrm{a}} \mathrm{B}$. PROKSA, ${ }^{\mathrm{b}}$ B. STEINER, and ${ }^{\mathrm{b}} \mathrm{M}$. KOÓŠ
${ }^{\text {a }}$ Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Technical University, CS-812 37 Bratislava
${ }^{5}$ Institute of Chemistry, Slovak Academy of Sciences, CS-842 38 Bratislava

Received 17 December 1992

Abstract

By the reaction of buxus alkaloid cyclobuxine D with 1,2-epoxypropane and 6-0-(2,3-epoxy-propyl)-1,2:3,4-di-O-isopropylidene- α-D-galactopyranose, corresponding C-3-, C-20-mono- and C-3-, C-20-bisalkanolamines were synthesized; the structure of the prepared compounds was confirmed by spectral data.

Cyclobuxine D (I) and cyclovirobuxine D (II) belong to the major alkaloids, secondary metabolites of plants of Buxus species [1-5]. From these two natural bases, cyclovirobuxine D (II) exhibited remarkable pharmacological antiarrhythmic properties [6,7$]$ and it was tested clinically [8]. Because there is an assumption that structurally related cyclobuxine D (I) could exhibit similar effects, we prepared six new derivatives of alkaloid I for biological evaluation. We have studied reaction of cyclobuxine D with selected epoxides and the possibility of preparation of all three alkanolamine types derived from cyclobuxine D, i.e. C-3- and C-20-mono- and C-3-, C-20bisalkanolamines, was followed.

As a secondary diamine, cyclobuxine D can react with two equivalents of epoxide. By heating with 1,2-epoxypropane, alkaloid I afforded a mixture of three compounds (III-V), which were separated using column chromatography. In the mass spectrum of all three isolated compounds, a distinct peak of molecular ion was observed indicating that compound $I I I$ is derivative of cyclobuxamine where both secondary amino groups reacted with epoxide (M^{+} at $m / z=502$); compounds $I V$ and V are monoalkanolamines $\left(\mathrm{M}^{+}\right.$at $\left.\mathrm{m} / \mathrm{z}=444\right)$. The base peak which is formed in the case of cyclobuxine D by generating of $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N}^{+} \mathrm{HCH}_{3}$ fragment ($\mathrm{m} / \mathrm{z}=58$) owing to splitting of $\mathrm{C}-17-\mathrm{C}-20$ bond [9], enabled us to determine position of alkanolamine grouping in the structures of $I V$ and V. In the spectrum of compound $I V$, the base peak was observed at $\mathrm{m} / \mathrm{z}=116$ $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right)$ indicating that 1,2 -epoxypropane reacted with $\mathrm{C}-20-\mathrm{N}$ methylamino group; the occurrence of base peak at $\mathrm{m} / \mathrm{z}=$ 58 in the spectrum of compound V is indicative for derivative with alkanolamine grouping at the C-3 position. In the spectra of all three compounds, further significant peaks corresponding to the fragmentations $\mathrm{M}-45\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{CHOH}^{\circ}\right)$ and $\mathrm{M}-$ 15 were registered. Because (\pm)-1,2-epoxypropane was used for the synthesis, prepared compounds $\mathrm{III}-\mathrm{V}$ are mixtures of diastereoisomers exhibiting duplication of some signals in the ${ }^{1} \mathrm{H}$ NMR spectra. In the spectrum of compounds $I I I$ and V, the signals of $\mathrm{C}-4^{\circ}-\mathrm{H}_{\mathrm{a}}, \mathrm{C}-4^{-}-\mathrm{H}_{\mathrm{b}}$ were shifted downfield; the signal of $\mathrm{C}-4^{\prime}-\mathrm{H}_{\mathrm{a}}$ atom, situated in the cis-position with regard to the $\mathrm{C}-3-\mathrm{H}$ hydrogen atom, was duplicated. For compounds with the 2 -hydroxypropyl group attached to $\mathrm{C}-20-\mathrm{N}$ (III, IV), a change of signal position of H-21 protons ($\delta=1.08$ for $I, \delta=$ $0.87+0.91$ for III) was indicative; in the spectra of compounds III and V prepared by the reaction of epoxide on $\mathrm{C}-3-\mathrm{N}$, a shift of $\mathrm{H}-3$ signal ($\delta=2.90$ for $I, \delta=3.05$ for V) was registered. In the ${ }^{13} \mathrm{C}$ NMR spectra, the change of substituent on $\mathrm{C}-3-\mathrm{N}$ re-

Table 1. ${ }^{13} \mathrm{C}$ NMR Data of Cyclobuxine $\mathrm{D}(\mathrm{I})$ and Compounds III-VIII

Compound	C-3	C-4	C-17	C-20	C-21	C-4	C-3—NMe	C-20—NMe
III	63.6	153.9	61.9	58.9	19.1	100.8	34.5	34.5
II	68.8	151.8	57.5	63.7	11.4	103.4	44.5	44.5
IV	63.8	153.8	57.6	63.6	11.5	100.8	34.5	44.4
V	68.9	151.5	61.2	58.9	19.1	103.5	45.2	34.2
VI	68.5	151.5	57.2	63.4	11.2	103.6	44.9	44.9
VII	63.4	152.8	57.2	63.5	11.2	101.4	34.0	44.8
VIII	68.4	151.5	61.5	58.9	19.2	103.5	44.5	33.4

sulted in the change of shifts for C-3, C-4, C-3NCH_{3}, and $\mathrm{C}-4^{\circ}$. Substitution on $\mathrm{C}-20-\mathrm{N}$ resulted in the change of signals position for $\mathrm{C}-17, \mathrm{C}-20$, $\mathrm{C}-21$, and $\mathrm{C}-20-\mathrm{NCH}_{3}$ (Table 1). Alkanolamines VI-VIII were synthesized by the reaction of (+)-6-O-(2,3-epoxypropyl)-1,2:3,4-di-O-isopropylidene- α-dgalactopyranose with alkaloid I using the similar method as for N-(2-hydroxypropyl) derivatives of cyclobuxamine D. Considering that compounds VIVIII were optically pure compounds, duplication of signals in the NMR spectra was not observed; synthesized compounds were characterized on the basis of NMR data applying knowledge obtained during studies on structure of compounds III-V (Table 1).

EXPERIMENTAL

Mass spectra (70 eV) were measured on a spectrometer JMS-100D (Jeol) at an emission current of $300 \mu \mathrm{~A}$, applying direct sample-introduction technique. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (in CDCl_{3} solutions) were registered on a spectrometer AM-300 (Bruker) operating at 300.13 or 75.46 MHz working frequencies. For TLC, Silufol plates in the mixture of chloroform-methanol-ammonia ($\varphi_{\mathrm{r}}=18: 7: 1.5$) were used; detection was performed by the spraying with KMnO_{4} solution ($1 \mathrm{~g} / 100 \mathrm{~cm}^{3}$ of water).
6-O-(2,3-Epoxypropyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose was prepared from 3-chloro-1,2-epoxypropane and 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose according to the known method [10].

Reaction of Cyclobuxine D (I) with Epoxides

A mixture of $/(500 \mathrm{mg} ; 1.3 \mathrm{mmol})$ and 1,2-epoxypropane ($1.5 \mathrm{~g} ; 25.8 \mathrm{mmol}$) or 6-O-(2,3-epoxypropyl)-1,2:3,4-di-O-isopropylidene- α-d-galactopyranose ($820 \mathrm{mg} ; 2.6 \mathrm{mmol}$) in methanol ($25 \mathrm{~cm}^{3}$) was heated at $30^{\circ} \mathrm{C}$ for 3 h . Solvent was removed in vacuo and the residue was chromatographed on silica gel using a mixture of chloroform-methanol-ammonia ($\varphi_{\mathrm{r}}=18: 7: 1.5$) as an eluent; individual fractions were monitored by TLC using the same eluent. Cor-
responding fractions were combined, solvents removed and the residue was dried. Amorphous products were obtained.

N -3,N-20-Bis(2-hydroxypropyl)cyclobuxine D (III)

Yield $=320 \mathrm{mg}(49 \%), R_{f}=0.84$; for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{3}$ ($M_{r}=502.9$) w_{i} (calc.): $74.04 \% \mathrm{C}, 10.82 \% \mathrm{H}, 5.57$ \% N; w_{i} (found): 73.97 \% C, 10.93 \% H, 5.55 \% N. Mass spectrum, m/z (I/\%): 502 (11), 487 (3, M-15), 457 (36, M-45), 414 (16), 398 (5), 386 (2), 369 (3), 367 (3), 116 (100).

N-20-(2-Hydroxypropyl)cyclobuxine D (IV)

Yield $=84 \mathrm{mg}(15 \%), R_{\mathrm{f}}=0.47$; for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}$ ($M_{\mathrm{r}}=447.7$) w_{i} (calc.): $75.63 \% \mathrm{C}, 10.88 \% \mathrm{H}, 6.30$ \% N; w_{i} (found): 75.53 \% C, 10.79 \% H, 6.26 \% N. Mass spectrum, m/z (I/\%): 444 (4), 429 (2), 412 (1), 399 (53), 356 (7), 313 (4), 116 (100).

N-3-(2-Hydroxypropyl)cyclobuxine D (V)

Yield $=73 \mathrm{mg}$ (13 \%), $R_{4}=0.21$; for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}$ ($M_{\mathrm{r}}=444.7$) w_{i} (calc.): 75.63 \% C, $10.88 \% \mathrm{H}, 6.30$ \% N; wif(found): 75.55 \% C, 10.92 \% H, 6.27 \% N. Mass spectrum, m/z (I//\%): 444 (32), 429 (32), 414 (35), 399 (51), 386 (15), 369 (6), 367 (7), 355 (8), 342 (27), 322 (8), 58 (100).

$\mathrm{N}-3, \mathrm{~N}-20-\mathrm{Bis}(2-h y d r o x y-3-(1,2: 3,4-$ di-O-isopropyli-dene-6-O-(α-d-galactopyranosyl)propyl))cyclobuxine D (VI)

Yield $=280 \mathrm{mg}(21 \%), R_{\mathrm{f}}=0.75$; for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{~N}_{2} \mathrm{O}_{15}$ ($M_{\mathrm{r}}=1019.3$) w_{i} (calc.): 64.81 \% C, $8.90 \% \mathrm{H}, 2.75$ \% N; w_{i} (found): 64.70 \% C, $8.94 \% \mathrm{H}, 2.73 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta: 5.53$ (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, J_{1_{1}, 2^{2}}=5.03$ $\mathrm{Hz}), 4.93$ (s, $1 \mathrm{H}, \mathrm{C}-4^{\prime}-\mathrm{H}_{\mathrm{a}}$), $4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, 4.10 (m, 1H, H-16), 3.05 (m, 1H, H-3), 2.54 (s, 6H, $\left.\mathrm{N}-3-\mathrm{CH}_{3}, \mathrm{~N}-20-\mathrm{CH}_{3}\right), 1.54\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46$ (s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16$
(s, 3H, H-28), 0.97 (s, 3H, H-18), 0.95 (d, 3H, H-21, $J_{20,21}=6.8 \mathrm{~Hz}$), $0.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-19_{\mathrm{a}}, J_{19 \mathrm{a}, 19 \mathrm{~b}}=3.8 \mathrm{~Hz}\right.$), $0.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-19_{\mathrm{b}}\right) .{ }^{13} \mathrm{C}$ NMR spectra are given in Table 1.

N-20-(2-Hydroxy-3-(1,2:3,4-di-O-isopropylidene-6-O-(α-d-galactopyranosyl)propyl)) cyclobuxamine D (VII)

Yield $=180 \mathrm{mg}(20 \%), R_{f}=0.52$; for $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{8}$ ($M_{\mathrm{r}}=703.0$) w_{i} (calc.): 68.28 \% C, $9.46 \% \mathrm{H}, 3.98 \%$ $\mathrm{N} ; w_{i}$ (found): 68.16 \% C, $9.58 \% \mathrm{H}, 3.95 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta: 5.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, J_{1^{\prime \prime}, 2^{\prime \prime}}=5.1\right.$ $\mathrm{Hz}), 4.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4^{-}-\mathrm{H}_{\mathrm{a}}\right), 4.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4^{\circ}-\mathrm{H}_{\mathrm{b}}\right)$, 4.13 (m, 1H, H-16), 2.90 (m, 1H, H-3), 2.54 (s, 3H, $\mathrm{N}-20-\mathrm{CH}_{3}$), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-3-\mathrm{CH}_{3}\right), 1.54,1.44$, 1.33, $1.32\left(4 \times \mathrm{s}, 12 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 28), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$), 0.94 (d, 3H, H-21, $\mathrm{J}_{20,21}=$ $6.5 \mathrm{~Hz}), 0.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-19_{\mathrm{a}}, \mathrm{J}_{19 \mathrm{a}, 19 \mathrm{~b}}=4.0 \mathrm{~Hz}\right), 0.08$ (d, $1 \mathrm{H}, \mathrm{H}-19_{\mathrm{b}}$), ${ }^{13} \mathrm{C}$ NMR spectra are given in Table 1.

N-3-(2-Hydroxy-3-(1,2:3,4-di-O-isopropylidene-6-O(α-D-galactopyranosyl)propyl))cyclobuxine D (VII)

Yield $=120 \mathrm{mg}(13 \%), R_{f}=0.24$; for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{8}$ ($M_{r}=703.0$) w_{i} (calc.): 68.28 \% C, $9.46 \% \mathrm{H}, 3.98 \%$
$\mathrm{N} ; \boldsymbol{w}_{i}$ (found): 68.15 \% C, 9.63 \% H, 3.92 \% N. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta: 5.54$ (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, J_{1^{\prime \prime}, 2^{\prime \prime}}=5.1$ $\mathrm{Hz}), 4.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4-\mathrm{H}_{\mathrm{b}}\right)$, 4.01 (m, 1H, H-16), 3.04 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{N}-3-\mathrm{CH}_{3}$), 2.33 (s, 3H, N-20- CH_{3}), 1.54, 1.45, $1.37,1.34\left(4 \times \mathrm{s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right), 1.13$ (s, $3 \mathrm{H}, \mathrm{H}-28$), 1.08 (d, 3H, H-21, $J_{20.21}=6.2 \mathrm{~Hz}$), 0.98 (s, 3H, H18), $0.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-19_{\mathrm{a}}, J_{19 \mathrm{a}, 19 \mathrm{~b}}=4.0 \mathrm{~Hz}\right), 0.09(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}-19_{\mathrm{b}}\right) .{ }^{13} \mathrm{C}$ NMR spectra are given in Table 1.

REFERENCES

1. Brown, K. S. and Kupchan, S. M., J. Am. Chem. Soc. 84, 4590 (1962).
2. Votický, Z., Bauerová, O., and Paulik, V., Collect. Czech. Chem. Commun. 40, 3055 (1975).
3. Bauerová, O. and Votický, Z., Chem. Zvesti 38, 255 (1984).
4. Kuchkova, K. I., Votický, Z., and Paulík, V., Chem. Zvesti 30, 174 (1976).
5. Mokrý, P. and Votický, Z., Chem. Zvesti 38, 101 (1984).
6. Hu, S., Zhou, N., and Fan, S., Acta Pharmacol. Sin. 2, 101 (1981).
7. Shan, P., Mao, R., Xu, J., and Li, J., J. Trad. Chin. Med. 4, 15 (1984).
8. Ruyun, J., Drugs Fut. 10, 381 (1985).
9. Dolejš, L., Hanuš, V., Votický, Z., and Tomko, J., Collect. Czech. Chem. Commun. 30, 2869 (1965).
10. Koóš, M. and Steiner, B., Czech. 276698 (1992).

Translated by M. Koóš

