elemental analysis and IR and ¹H NMR spectral data.

REFERENCES

- 1. Leistner, S., Gütschow, M., and Stach, J., Arch. Pharm. (Weinheim) 323, 857 (1990).
- 2. Gütschow, M. and Leistner, S., Z. Chem. 30, 440 (1990).
- Pazdera, P., Potůček, V., Nováček, E., Kalviňš, I., Trapencieris, P., and Pugovics, O., *Chem. Papers* 45, 527 (1991).
- 4. Chan, Chao-Han and Shish, Fang-Jy, *Heterocycles 26*, 3193 (1987).

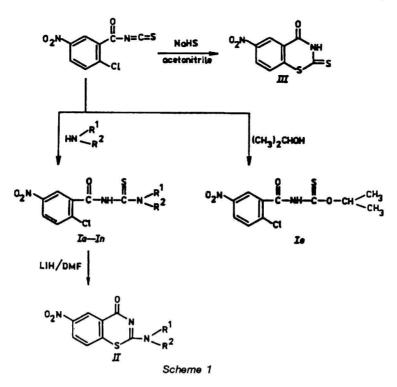
- 5. Leistner, S., Gütschow, M., and Wagner, G., *Pharmazie 43*, 466 (1988).
- 6. Gütschow, M. and Leistner, S., Z. Chem. 30, 23 (1990).
- 7. Pazdera, P. and Potůček, V., Chem. Papers 45, 677 (1991).
- 8. Gewald, K., Schinke, E., and Böttcher, H., Chem. Ber. 99, 94 (1966).
- 9. Pazdera, P. and Potůček, V., Czech. Appl. 262022 (1988).
- Horák, M. and Papoušek, D., Infračervená spektra a struktura molekul. (Infrared Spectra and Structure of Molecules.) P. 611. Academia, Prague, 1976.
- 11. Fujita, M., Takeda, Y., Terao, T., Hoshino, O., and Whita, T., Anal. Chem. 40, 2042 (1968).
- Pazdera, P., Řezka, M., and Nováček, E., Chem. Papers 44, 229 (1990).

Translated by M. Potáček

Activative Influence of the Nitro Group in the Cyclization Reactions of the Addition Products of 2-Chloro-5-nitrobenzoyl Isothiocyanate with the Amines and 2-Propanol

^aD. KOŠČIK, ^aP. KUTSCHY, ^aM. DZURILLA, and ^bN. MAZÁNEK

^aDepartment of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, CS-041 67 Košice


^bDepartment of Biochemistry, Faculty of Natural Sciences, P. J. Šafárik University, CS-041 67 Košice

Received 17 December 1991

Reaction of 2-chloro-5-nitrobenzoyl isothiocyanate with the primary and secondary alkyl- and arylamines, as well as with 2-propanol yields corresponding thioureas, or O-isopropyl monothiocarbamate, respectively. Heating of these thioureas in dimethylformamide with LiH or in the benzene solution of triethylamine leads to formation of the cyclization products, *i.e.* the corresponding 2-alkyl(aryl)amino-6-nitro-4H-1,3-benzothiazin-4-ones.

2-Thioxo-6-nitro-2,3-dihydro-4H-1,3-benzothiazin-4-one can be obtained by the reaction of 2-chloro-5-nitrobenzoyl isothiocyanate with sodium hydrogen sulfide. The synthesized benzo-thiazines are stable, their heating or melting does not lead to the rearrangement into the benzopyrimidinic heterocycles.

Studying the cyclization reactions of the products of the addition of 2-chlorobenzoyl isothiocyanate to the amines and alcohols, we came to a conclusion that the cyclization reactions occur only with those thioureas that have been obtained from the primary alkyl- and arylamines [1]. These cyclization reactions result in the derivatives of quinazolinones. Thioureas synthesized from the secondary amines as well as addition products of 2-chlorobenzoyl isothiocyanate with alcohols do not undergo the cyclization reactions. It was interesting to find out what would happen with the nitrogen and oxygen adducts of 2-chlorobenzoyl isothiocyanate that has a nitro group in the position 5. This group has a strong electron-accepting effect on nucleophilicity of the chlorine atom in *para* position of the benzene ring. Such activating influence results in the formation of the benzothiazine derivatives, as well as in the addition-elimination reaction with sodium hydrogen sulfide that produces 2-thioxobenzothiazine *III* (Scheme 1). This effect was utilized by *Deorha et al.* [2, 3] at the preparation of 2,4-dioxobenzothiazines using a reaction of the ester of 2-chloro-5-nitrobenzoic

acid with *N*-substituted thiourea. Benzothiazine derivatives with different degree of saturation were synthesized using various methods [4–7].

Biological activity of the benzothiazine derivatives is very diverse. The compounds of this type are known to serve as psychostimulators, antidepressants, analgetics, bacteriostatics, fungicides, antipyretics, sedatives, and spasmolytics [8].

2-Chloro-5-nitrobenzoyl isothiocyanate synthesized using a rhodanide method has not been so far described in the literature. It is a solid crystalline substance that is stable at the ambient temperature. The synthesized thioureas Ia-In (Table 1) as well as benzothiazines *II* (Table 2) are very poorly soluble in organic solvents. This fact caused some problems at measuring and interpretation of their IR and ¹³C NMR spectra. Therefore, only five benzothiazines have been identified.

The structures of the obtained thioureas la-ln, of the isopropyl ester *lo* and benzothiazines *ll* were confirmed by their IR and ¹H NMR spectra, and the benzothiazine derivatives were identified by their mass spectra containing a common fragment with m/z = 181 that proves the benzothiazine skeleton (Scheme 2).

The synthesized benzothiazine derivatives are stable even at 200 °C that implies high stability of the condensed skeleton of the molecule. Reaction of the O-isopropyl monothiocarbamate *lo* with LiH in DMF did not produce a corresponding 2-Oisopropyl-1,3-benzothiazine, but yielded nonisolable degradation products. We suggest that in alkaline medium a scission of the isopropyl residue occurred, as well as the degradation of the thiocarbamic group without cyclization.

In the IR spectra of thioureas la-ln (Table 3) the v(C=O) vibrations lie at $\tilde{\psi} \approx 1670 \text{ cm}^{-1}$, which is higher than the corresponding value with 2-alkyl-(aryl)amino-4H-1,3-benzothiazin-4-ones (Table 4), where v(C=O) vibrations lie in the region of $\tilde{\psi} = 1630-1645 \text{ cm}^{-1}$. The stretching vibrations v(NH-C=S) are present as a typical broad band at $\tilde{\psi} = 1510-1520 \text{ cm}^{-1}$. In benzothiazine derivatives this band disappears and a new band corresponding to v(C=N) emerges in the region about 1600 cm⁻¹. In the IR spectrum of 2-thioxo-6-nitro-2,3-dihydro-4H-1,3-benzothiazin-4-one we can observe v(C=O) vibrations at $\tilde{\psi} = 1700 \text{ cm}^{-1}$. The vibrations of the nitro group are located as could be expected at 1600-1630 cm⁻¹.

EXPERIMENTAL

IR spectra were measured using Specord 75 spectrophotometer (Zeiss, Jena) in KBr tablets, ¹H NMR spectra using a BS-487A (80 MHz) spectrometer (Tesla). The samples were dissolved in the CDCl₃—DMSO- d_6 mixture with TMS as an internal standard. ¹³C NMR and UV spectra have not been measured due to low solubility of the nitro derivatives of thioureas and benzothiazines. Mass spectra were measured using IMS-100D mass spectrometer (Jeol) at ionization energy 70 eV and the following temperatures of the ionization chamber: 225 °C (*IIm*), 240 °C (*IIi*, *IIn*), 265 °C (*IIe*), 150 °C (*III*). The reaction course was followed

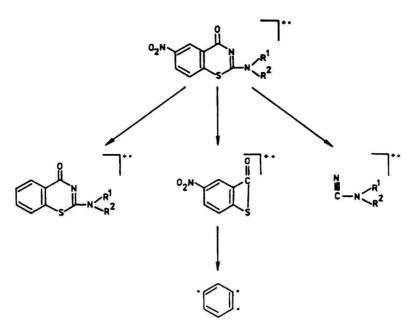
Table 1.	Characterization	of the	N-Alkyl(aryi)	- and N.N-Dia	Ikyl(diaryl)-N-	-(2-chlore	-5-nitrobenzoyi)thioureas
----------	------------------	--------	---------------	---------------	-----------------	------------	---------------------------

	R ¹	R ²	F1-		w _i (calc.)/% w _i (found)/%			Yield/%	11 - 50
Compound	н.	H.	Formula	M _r	С	н	N	T 1910/ 76	М.р.∕°С
la	Н	н`	C ₈ H ₆ CIN ₃ O ₃ S	259.6	37.01 37.03	2.33 2.36	16.18 16.20	72	144—145
Ю	н	C ₂ H ₅	C ₁₀ H ₁₀ CIN ₃ O ₃ S	287.6	41.76 41.56	3.50 3.58	14.61 14.70	64	157—158
lc	н	C₀H₅	C14H10CIN3O3S	335.6	50.10 50.16	3.00 3.04	12.52 12.60	68	163—164
ld	Н	CH₂C₀H₅	C ₁₅ H ₁₂ CIN ₃ O ₃ S	348.6	51.68 51.71	3.47 3.52	12.05 12.09	74	168—169
le	н	3-CH₂—C₅H₃N	C14H10CIN4O3S	349.6	48.10 48.15	2.88	16.02 16.12	74	154—155
lf	н	CH ₂ CH ₂ C ₆ H ₅	C ₁₆ H ₁₄ CIN ₃ O ₃ S	362.6	52.99 52.80	5.37 5.40	11.58 11.60	72	151—152
lg	н	4-CH₃O—C ₆ H₄	C ₁₅ H ₁₂ CIN ₃ O ₄ S	365.6	49.27 49.30	3.30 3.28	11.49 11.52	62	141—142
lh	н	4-CI—C ₆ H₄	$C_{14}H_9Cl_2N_3O_3S$	370.1	45.43 45.50	2.45	11.35 11.38	70	169—171
li	н	4-NO ₂ -C ₆ H ₄	C₁₄H₀CIN₄O₅S	380.6	44.18 44.20	2.38	14.72 14.80	67	181—182
IJ	н	2-CH ₃ -4-CIC ₆ H ₃	$C_{15}H_{11}Cl_2N_3O_3S$	384.1	46.90 46.82	2.88 2.90	10.94 11.01	64	172—173
lk	C_2H_5	C ₂ H ₅	$\mathrm{C_{12}H_{14}CIN_{3}O_{3}S}$	315.6	45.66 45.70	4.47 4.51	13.31 13.38	68	121—122
11	-	-(CH₂)₄—	C ₁₃ H ₁₂ CIN ₃ O ₃ S	327.6	47.66	3.69	12.82 12.74	71	186—187
Im	—(CH	₂) ₂ O(CH ₂) ₂ —	$C_{12}H_{12}CIN_3O_4S$	329.6	43.72 43.81	3.66 3.70	12.74	73	182—183
In	C₅H₅	C ₆ H₅	C ₂₀ H ₁₄ CIN ₃ O ₃ S	411.6	58.36 58.40	3.42 3.51	10.21 10.26	63	158—159
lo	-	-	$C_{11}H_{12}CIN_2O_4S$	303.6	43.51 43.50	3.98 3.88	8.47 8.40	54	148—149

Solvent for all compounds chloroform—hexane ($\varphi_r = 1$ 1).

by means of thin-layer chromatography on Silufol plates (Kavalier, Votice).

2-Chloro-5-nitrobenzoic acid and its chloride were prepared according to [9] and their physicochemical parameters were in agreement with the literature data.


2-Chloro-5-nitrobenzoyl Isothiocyanate

A mixture of 2-chloro-5-nitrobenzoyl chloride (8.8 \mathfrak{F} ; 0.04 mol), Pb(SCN)₂ (13.3 g; 0.04 mol), and

hexane (30 cm³) was moderately refluxed for 1.5 h. Afterwards, a sediment of PbCl₂ was removed by filtration. The filtrate was boiled with charcoal, filtered and the solid product was recrystallized from the hexane—petroleum ether ($\varphi_r = 1 : 1$) mixture. Melting point of the product was 78 °C, the yield 80 %. For C₈H₃ClN₂O₃S w_i(calc.): 39.58 % C, 1.24 % H, 11.55 % N; w_i(found): 39.60 % C, 1.22 % H, 11.51 % N. IR spectrum, $\tilde{\nu}$ /cm⁻¹: 1920 ν (N=C=S), 1700 ν (C=O).

Table 2. Characterization of the 2-Alkyl(aryl)amino-6-nitro-4H-1,3-benzothiazin-4-ones

Compound	R ¹	R ¹ R ²	Formula		w _i (calc.)/% w _i (found)/%			Yield/%	
Sompound	n	n	Formula	M,	с	н	N	11010/ 70	М.р.∕°С
lle	н	3-CH2-C5H3N	C14H10N4O3S	314	53.55	3.21	17.84	57	232-233
					53.54	3.20	17.83		
lli	н	4-NO₂—C ₆ H₄	C ₁₄ H ₈ N₄O₅S	344	48.88	2.34	16.28	53	216-217
					48.83	2.34	16.26		
llk	C₂H₅	C₂H₅	C ₁₂ H ₁₃ N ₃ O ₃ S	279	51.62	4.69	15.06	56	223-224
					51.58	4.72	15.03		
llm	(CH	2)2O(CH2)2-	C12H11N3O4S	293	49.15	3.78	14.34	51	224-225
					49.17	3.80	17.32		
lln	C₀H₅	C₅H₅	C20H13N3O3S	375	64.05	3.49	11.20	51	231-232
			10 10 0 0		64.08	3.51	11.22		

Scheme 2 Basic fragmentation routes of the 2-alkyl(aryl)amino-6-nitro-4H-1,3-benzothiazin-4-ones.

N-Alkyl(aryl)-*N*[']-(2-chloro-5-nitrobenzoyl)thioureas *la—In* and Isopropyl 2-Chloro-5-nitrobenzoylmonothiocarbamate (*lo*)

2-Chloro-5-nitrobenzoyl isothiocyanate (9.7 g; 0.04 mol) was dissolved in benzene or chloroform and gradually amine or 2-propanol (0.04 mol) was

added. After several hours a product precipitated that represented the corresponding thiourea or monothiocarbamic acid ester. The product was separated by filtration, dissolved in chloroform or methanol, boiled with charcoal and recrystallized from the chloroform—hexane or methanol—water mixture.

Table 3.	IR and	¹ H NMR	Spectral	Data of	Compounds la-lo
----------	--------	--------------------	----------	---------	-----------------

Compound		v/	′cm ⁻¹			δ		
Compound	ν(C=O)	v(NH)	v(NH—C=S)	ν(NO ₂)	H _{arom}	NH	CH₃	CH₂
la	1680	3400	1525	1600 1370	7.9—8.1	9.8—11.8	-	-
Ib	1675	3390	1520	1600 1400	7.9—8.1	8.8 9.2	1.4	3.1
lc	1680	3380	1510	1610 1395	7.5—8.2	11 11.2	-	-
ld	1675	3390	1520	1600 1400	7.5—8.2	9.7 10.6	-	4.9
le	1675	3240	1525	1600 1400	7.8—8.3	8.9 11.1	-	5.1
lf	1670	3440	1520	1600 1395	7.5—8.2	9.1 8.9	-	3.0 3.6
Ig	1675	3395	1525	1600 1410	7.5—8.0	9.6 8.7	3.76	-
lh	1675	3380	1525	1600 1400	7.5—8.1	12.4 12.2	-	-
li	1680	3375	1520	1600 1400	7.5—8.2	9.5 11.3	-	-
lj	1680	3395	1520	1600 1390	7.7—8.4	12 8.7	2.1	-
lk	1690	3390	1520	1600 1390	8.1—8.3	8.5	1.25	3.75
11	1685	3370	1520	1600 1400	7.35—8.3	9.1	-	3.75
Im	1690	3365	1520	1600 1400	7.9—8.2	-	-	3.8
In	1680	3390	1510	1600 1390	7.7—8.2	8.7	-	-
lo	1680	3370	1460	1600 1385	7.6—8.2	9.15	1.15	5.45 (CH)

Table 4. IR Spectral Data of Compounds //

a 1	,	v /cm ⁻¹		
Compound	v(C=O)	v(C==N)	v(NO ₂)	
lle	1640	1590	1575, 1340	
lli	1650	1595	1570, 1345	
llk	1630	1590	1575, 1330	
llm	1660	1610	1565, 1345	
lln	1645	1600	1570, 1350	

2-Alkyl(aryl)amino-6-nitro-4H-1,3-benzothiazin-4-ones IIe, IIi, IIk, IIm, IIn

Compound *la*—*ln* (0.02 mol) was dissolved in the minimal volume of dimethylformamide and lithium hydride (0.12 g; 0.015 mol) was added. Reaction mixture was moderately refluxed for 1.5 h. Then water (15 cm³) was added and the solution was neutralized with diluted HCl ($\varphi_r = 1$ 1). The precipitated cyclic product was filtered and recrystal-lized from the methanol—water or chloroform—hexane mixture.

2-(3-Picolylamino)-6-nitro-4H-1,3-benzothiazin-4one (IIe); Mass spectrum, *m/z* (I_r/%): 314 (20), 181 (40), 107 (36), 92 (100), 75 (60).

2-(4-Nitrophenylamino)-6-nitro-4H-1,3-benzothiazin-4-one (IIi); Mass spectrum, *m/z* (I_r/%): 344 (100), 328 (17), 297 (16), 181 (63), 163 (17), 75 (20).

2-Diethylamino-6-nitro-4H-1,3-benzothiazin-4-one (*IIk*); Mass spectrum, *m/z* (*I*_r/%): 279 (30), 184 (100), 181 (31), 110 (20), 75 (46).

2-Morpholino-6-nitro-4H-1,3-benzothiazin-4-one (*IIm*); Mass spectrum, *m/z* (*I*,/%): 293 (12), 181 (100), 112 (85), 110 (90), 75 (68).

2-Diphenylamino-6-nitro-4H-1,3-benzothiazin-4one (IIn); Mass spectrum, *m/z* (I,/%): 375 (100), 329 (52), 194 (82), 181 (15), 77 (81), 75 (18).

2-Thioxo-6-nitro-2,3-dihydro-4H-1,3-benzothiazin-4-one (///)

2-Chloro-5-nitrobenzoyl isothiocyanate (5 g; 0.02 mol) was dissolved in acetonitrile (20 cm³) and NaHS (1.15 g; 0.02 mol) was added. Reaction mixture was refluxed for 2.5 h. Afterwards water (15 cm³) was added and the mixture was neutralized with diluted HCI ($\varphi_r = 1$ 1). The precipitated cyclic product was separated by filtration and recrystallized from methanol—water or chloroform—hexane.

Yield = 71 %, m.p. = 149–150 °C. For $C_8H_4N_2O_3S_2 w_i$ (calc.): 40.01 % C, 1.66 % H, 11.66 % N; w_i (found): 40.15 % C, 1.69 % H, 11.70 % N. IR spectrum, \tilde{v} /cm⁻¹: 1635 v(C=O), 1570, 1340 v(NO_2), 1510 v(NH-C=S). Mass spectrum, *m/z* (l_r /%): 240 (23), 181 (100), 138 (20), 75 (70).

REFERENCES

- 1. Koščik, D., Kutschy, P., Dzurilla, M., Imrich, J., and Šurkalová, I., Chem. Papers, in press.
- 2. Deorha, D. S., J. Indian Chem. Soc. 42, 97 (1965).
- Szabó, J., Varga, I., and Sohár, P., Acta Chim. Hung. 88, 149 (1977).
- 4. Vinkler, E. and Szabó, J., Acta Chim. Hung. 82, 317 (1975).
- Gruber, P., Müller, R., and Steiglich, W., Chem. Ber. 106, 2863 (1973).
- Ben-Ishai, D., Gillor, I., and Warsansky, A., J. Heterocycl. Chem. 10, 149 (1973).
- 7. Wagner, G. and Richter, P., Pharmazie 24, 100 (1969).
- 8. Pallazo, S. and Giannola, L., Acta Acad. Sci. 32, 22 (1973).
- 9. Lehmstedt, I., Ber. 64, 2384 (1931).

Translated by G. Kogan