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Physicochemical models of selection processes on biomacromolecules 
— replicators are investigated by making use of simple qualitative theory of 
differential equations. It is assumed that each replicator is self-reproduced 
(replicated) with a participation of a substrate (energy-rich molecules). The 
qualitative features of the studied system are very sensitive to the form of 
rate functions. It is demonstrated that genuine Darwinian selection is sim­
ulated by the model only if the rate functions are determined by the mass-
-action law. A comparison with the original Eigen theory is presented. 

С использованием простой качественной теории дифференциаль­
ных уравнений исследованы физико-химические модели селекционных 
процессов для биомакромолекул — репликаторов. Предполагается, 
что каждый репликатор самовоспроизводится (реплицируется) с учас­
тием субстрата (молекул с высоким содержанием энергии). Качес­
твенные характеристики изучаемой системы в сильной степени зависят 
от вида скоростных функций. Показано, что истинно дарвиновская 
селекция симулируется данной моделью только в том случае, если 
скоростные функции определяются законом действия масс. 
Проводится сравнение с исходной теорией Эйгена. 

I. Introduction 

A mathematical modelling of selection processes on molecular level has been 
initiated by Eigen [1,2] (cf. also [3—10]) at the beginning of seventies. He 
introduced the notion "information carrier", which corresponds to a biomacro­
molecular system capable to reproduce itself (this conceptual notion will be 
called in the forthcoming part of communication the replicator, originally 
introduced by Schuster [11]). The process of self-reproduction of replicators is 
described by Eigen's phenomenological equations with two types of external 
constraints which would make the reaction system more competetive. The first 
type of these constraints is called the constant population, they require that the 
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sum of concentrations of replicators is kept fixed in the course of whole time 
evolution of reaction system. The second type of constraints, called the constant 
fluxes, requires that an inflow of energy-rich molecules (necessary for self-
-reproduction of replicators) in the reaction system is time invariant. Both these 
types of external constraints induce a selective pressure among replicators, 
which gives rise to typical Darwinian selection known up to that time only for 
biological systems. Eigen has used this physicochemical model as a conceptual 
tool to abridge a deep gap between information contents of noninstructed 
synthesis of chemical macromolecules (chemical evolution) and instructed syn­
thesis — self-reproduction of biological macromolecules (a very beginning of 
biological evolution). Eigen and his successors [4—7] devoted attention mainly 
to development of the selection model based on the constant-population con­
straints whereas its, at least, equivalent counterpart involving the constant-
-fluxes constraints was studied only marginally [1, 4, 8, 12] as a possible and 
alternative explanation of selection processes on molecular level. This was 
caused mainly by mathematical difficulties in the stability studies of its station­
ary states. Ebeling et al. [9—10] have shown that this formal "drawback" of the 
constant-fluxes approach can be surmounted by the standard technique of 
qualitative theory of differential equations [13], in particular by the so-called 
linearization method. Furthermore, the constant-fluxes approach has very easy 
and simple physicochemical interpretation and it can be naturally related to 
known kinetical and ecological models, which form a main field of interest in 
the modern formal chemical kinetics [14]. Recently, Krempaský and Květoň [15] 
have studied an extension of Ebeling's approach taking into account constant 
inflows of replicators. They proved that this possibility permits the so-called 
external regulation of selection processes. 

The purpose of this communication is to develop the Ebeling's approach to 
selection processes based on constant-fluxes constraints. We shall demonstrate 
that this unjustly omitted theory represents very fruitful alternative possibility 
how to explain the selection processes on molecular level. Its theoretical tools 
are very flexible for further generalization and modification, i.e. it permits to 
develop very deep and exhaustive particular theoretical studies of the selection 
processes. In our forthcoming communication [16] we shall publish its applica­
tion to replicator systems with incorrect reduplications and their combination 
to greater kinetical patterns called the hypercycles [3—5]. 

II. General model 

We are given a set composed of n replicators (biomacromolecules) X,, X2,..., 
X„ and a substrate X0, confined to a well stirred reactor, which are capable of 
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replication. It is assumed that each replicator X, is self-reproduced (replicated) 
with a participation of the substrate X0 and that the reactor walls are permeable 
to energy-rich compounds (corresponding to the substrate X0 with constant 
inflow) and energy deficient compounds (which are allowed to flow out from the 
reactor) (Fig. 1). These assumptions are formally represented by the following 
system of chemical reactions 

R, D - ^ U X0 (la) 

R 2 : X0 ^ U Q (lb) 

A / : X0 + X, *o*Л*/) , 2Xi { l c ) 

B / : X,- **'<*'> , D (id) 

for / = 1 , 2 , n. The square symbol D on the r.h.s. of (lb) and (Id) represents 
those compounds — reaction products ("garbage") that are irrelevant for the 
kinetics of studied system. The same symbol was used also on the l.h.s. of (la), 

• ("food") 

Ф 

xo 

X0 • X / -2X,-

U = 1,2 ,л) 

Fig. L The evolution reactor composed of a 
reaction vessel with temperature control. Its 
walls are impermeable to replicative biomacro-
molecules. Energy-rich material — substrate 
("food") is poured in to the reactor by a con­
stant inflow Ф0. Energy poor material ("gar­
bage") is outflowing from the reactor through 

reactor walls. 
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here it means a blank side of chemical reaction. Each arrow (reaction) in (1) is 
evaluated by the corresponding rate function expressing the velocity of the 
reaction. The entries x]9 хъ ...xn are the concentrations of X,, X2,... X„, respec­
tively. The reaction R,, see {la), is a constant inflow Ф0 of the substrate X0, the 
reactions A,, A2,... A„, see (7c), are replication processes of replicators onto 
themselves with a participation of the substrate XQ. The second reaction R2, see 
(lb), and the last reactions B,, B2,... B„, see (Id), correspond to a decomposition 
of the substrate and replicators, respectively, to products that are not appearing 
in the above replications. The system (1) of chemical reactions may be diagram-
matically represented by the so-called reaction graph [14, 17, 18] (Fig. 2). In this 

Fig. 2. Reaction graph [17] of the reaction 
scheme (/). The shaded square vertices are as­
signed to each individual chemical reaction from 
(7). The circle shaded vertices are assigned to 
compounds of kinetic system. The reaction and 
compound vertices are joined together by orien­
ted lines — edges, the number of arrows on the 

line corresponds to stoichiometric numbers. 

graph each square shaded vertex (assigned to a reaction of (1)) is evaluated by 
the corresponding rate function already presented in (1). Following very fruitful 
idea of Volpert [17, 18], the dynamics of the considered chemical reactions is 
described by the following system of differential equations determined over the 
reaction graph 

*0 = Ф 0 - * 0 | Ч + £ХЛ(*,)] 

*i = *f[*a/i(*i) - £/(*<)] (/ = 1, 2, . . . , и) 

(2a) 

(2b) 

where x, = dxjdt is the time derivative of the concentration JC, of the compound 
X, and % is the substrate decomposition rate constant. This autonomous system 
of ordinary differential equations models the kinetics of the physicochemical 
system of replicating biomacromolecules with a participation of the substrate 
Xo. The model contains unspecified functions/(*,) and £,(*,), in the forthcom-
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ing part of this chapter we shall give their specification and in such a way we 
arrive at different models of the selection of replicators. 

1. Ebeling's model of selection 

The ifiodel of Ebeling [9, 10] can be constructed from our general equations 
(2a, 2b) if the functions /.(JC,.) and #,(*,) a r e specified as positive constant 
functions 

/.(*,) = я , > 0 *,(*/) = */>0 (J) 

for / = 1, 2, ..., n. Then the system (2a, 2b) is 

x0 = Ф0 - x01 % + £ а,хА (4a) 

Xf = XiifliXQ - bt) (i = 1, 2, . . . , n) (4b) 

It corresponds to the fact that the kinetics of (la—Id) is governed by the 
mass-action law. We have to emphasize, the present model is a generalization 
of the original Ebeling's approach, we have introduced very important assump­
tion that the substrate X0 is monomolecularly decaying, see (lb). It removes an 
overlooked shortcoming of Ebeling's model, where (if we put % = 0 in our 
model) exists a "catastrophic" possibility in which all replicators X,, X2,..., X„ 
are becoming extinct whereas the concentration of substrate is linearly increas­
ing to infinity. This inappropriate feature of the Ebeling's model is simply 
removed postulating the decomposition of XQ, see (lb). 

If the initial concentrations (at t = 0) are positive, then for each t > 0 the 
concentration of X0 is positive and concentrations of X,, X2,... ,X„ are non-
negative, and all are bounded from above 

0 < x0(t) < oo (5a) 

0 < xg(t) < oo (5b) 

The vector form of (4a, 4b) is 

х0=Ф0-х0(% + атх) (6a) 

x = dg (x0a- b)x (6b) 

where a = (a}9a29... ,an)
T and b = (bbb2,... ,bn)

T are column vectors of positive 
rate constanis assigned to replication and decomposition processes, respective­
ly, and x = (JC,, x2,..., xn)

T is a column vector of replicator concentrations. The 
symbol dg (•) denotes a diagonal matrix with entries from the vector (•). 
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The stationary states of (4a, 4b) are of the following two kinds: 
1st kind. The stationary concentration x0 is positive whereas stationary 

concentrations xl9 x2, , x„ are vanishing 

j , _ *b (7*) 

*,. = 0 ( / = 1 , 2 , ,n) i7b) 

This stationary state will be denoted by S0. 
2nd kind. The stationary concentrations x0 and xp (for a preselected index 

1 <p<n) are positive whereas stationary concentrations xb... ,*,_,, 
*,+ ,,..., jč„ are vanishing 

(«я) 

1,2, ,n) (8b) 

where Sip is Kronecker's delta symbol, Sip = 1 for i = /7, and <5̂  = 0 for / ф /7. The 
stationary concentration xp should be positive, hence 

-^ < i (9) 
Фо Л, 

This stationary state will be denoted by Sp. We say that the stationary state S, 
is properly selected if the inequality (9) is satisfied, in the opposite case, we say 
that the stationary state Sp does not exist. 

In order to study the stability of stationary states S0, S„ , Sn we have to 
construct the Jacobi matrix of (4a, 4b) 

Ых x) ( -<*Tx- ^o -х0а
т 

ô(*o,*) \ dg(x)a dg(x0a-b) 

It should be evaluated at the stationary states S0 and Sp 

x, = 8ip 1 (Фо 

4 

* 0 = ^ 
aP 

S) v 
apJ 

-% ~^aT 

% 
J(So) = | I (Па) 
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ШЬ) 

where ep = (0, ..., 1, ..., 0) r is a column vector with all entries equal to zero 
except of the />-th position which is unit. 

Since the Jacobi matrix J(S0) is triangular, its eigenvalues are simply its 
diagonal elements 

4 0 ) =-% (12a) 

W-a*-b, ( / = 1 , 2 , „) { m 

The eigenvalue А|>0) is automatically negative (the substrate decomposition rate 
constant % is positive), other eigenvalues A(i0), A^0), ..., Я^0) are negative if 

- ^ > max ^ (75) 
Ф 0 ^ ' ^ i í 

Hence, the stationary state S0 is asymptotically stable if the above condition (75) 
is satisfied. 

The eigenvalues of J(Sp) are determined from its secular equation 
|J(S,) - AE| = 0 

(A* + фЛл + ф0ар - %bp) П ( ^ 4 - ft, - A) = 0 (14) 
bp /=i \ap J 

From the second term on the l.h.s. of (14) we get n — 1 eigenvalues of J(Sp) 

Я(Р> = ^ f l | . - ft,, (i = 1, ..., p - 1, p + 1, ...,л) (75) 

The remaining two eigenvalues Ajf* and A^ are determined by the quadratic 
equation (the first term on the l.h.s. of (74)). Its roots (eigenvalues) have negative 
real part if and only if the coefficients of the quadratic equation are positive 

% < ^ ( 7 6 ) 

Фо bp 
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The eigenvalues {15) are negative if 

^ = m a x ^ {17a) 

Hence, all eigenvalues of J{Sp) have negative real part if the conditions {16) and 
{17a) are simultaneously satisfied 

* ° < ^ = m a x ^ {17b) 
ф0 bp i^»6 f . 

This means that among stationary states S0, S,, ..., S, is asymptotically stable 
either S0, if the condition (75) is satisfied, or Sp state (1 < p < n), if the condition 
{17b) is satisfied; therefore, the only stationary state is asymptotically stable due 
to the fact that the conditions {13) and {17b) are mutually excluding. 

The above results represent only sufficient conditions for a stationary state to 
be asymptotically stable. Now we would like to demonstrate that the conditions 
{13) and {17b) are also necessary. The eqns {4a, 4b) can be rewritten as follows 

^(-) = <*oyo-Íaiyi-% {18a) 
dt'\y0/ ,= i 

— In y,- = a, - y0b,- {i = 1, 2, ..., n) {18b) 
at 

where y0 = 1/JC0, yf = JC,- (for / = 1, 2, ..., л), and ť is a new time variable 

determined by ť = ť (t) = x0{r) dr, where dť = x0 (í) d/, /'(0) = 0, ť (t) -• oo as 
Jo 

/ - • 0 0 . 

Time average concentrations are defined by 

zM = - í у, 
t Jo 

(r)dr (1 = 0, 1, ...9n) {19) 

Let us integrate differential equations {18a, 18b) from x = 0 to г = /, after 
dividing by r, we have 

Ч~Т; У = Ф ° 2 о ( 0 - Ž *<*/(') - % (20a) 
/ W O л(0)/ /-i 

ln>.,.(0-ln^,(0) = a _ Z ŕ ( 0 6 ŕ ( / e l f 2 f . . . f | | ) ( 2 0 ô ) 
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We shall assume that the limit values z,(oo) always exist and they are non-
negative and bounded from above. Let us assume that the concentration yp(t) 
does not vanish as f-юо, then from (20b) we get 

zo(oo) = ^ (21) 

This means that such index p of nondecaying replicator is unambiguously 
determined. If we have two such indices p and q, then ap/bp = aq/bq, the con­
dition of which is physically highly unprobable (it implies that the replicators X,, 

and X are kinetically equivalent). For other indices / = 1, 2, P-U 
p + 1,...,n the replicator concentrations vanish as ř-юо; limit values of their 
time averages are vanishing as /-•oo. Since the variable y0(t) is positive and 
bounded from above, the relation (20a) provides as ř-+oo 

*«)-Ä-3 (.22) 

The limit values of time averages tend to their stationary values as r-*oo 

limz,(0 = Pi 0 = 0, 1, ..., n) (23) 

The relation (20b) can be simply rewritten in the form 

>'/(0 = ^(0)exp{[a / -Zo(06^} (24) 

We shall study asymptotical properties of this solution y,(t). For an index i = 1, 
2, ..., p — 1, p + 1, ..., n the concentration yf(t) vanishes as r->oo, this implies 
that the asymptotical value of exponent in (24) should be negative, 
я, — z0 (oo) b i < 0, or by making use of (21) we get я, /6, < ap /bp9 which is togeth­
er with a positiveness of (22) equivalent to the condition (17b) for the asymptoti­
cal stability of S . 

Fig. 3. The results of numerical integration of 
the system (4a, 4b) consisting of three replica­
tors with the following set of parameters: 
Ф0 = 4, %=\, fl, = 2, a2 = 2.5, fl3 = 3, 
6, = b2 = b3 = 1, and the initial concentrations 
are xt(0) = 0.5 (i = 0, 1, 2, 3). The "best-fitted" 

replicator is X3. 
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Summarizing the above results, for a replicator system determined by (4a, 4b) 
there exist two mutually excluding alternative possibilities. The first possibility 
consists in that all replicators are asymptotically becoming extinct (determined 
by the condition (13)), for the second possibility there exists a molecular selec­
tion process which always leads to an unambiguous selection "decision" — to 
survival of the "best-fitted" replicator (determined by (17)) and to the extinction 
of all its competitors. An illustrative example of three replicators is shown in 
Fig. 3. 

2. Quadratic selection model 

The model of quadratic selection is based on the following form of functions 
fi(x,) and £,(*,) from (2a, 2b) 

/ ; (*,.) = a, *,. #,(*,) = b; ( / = l , 2 , . . . , / i ) (25) 

where я, and b, are positive rate constants. In this approach the velocity of 
replication processes depends quadratically on concentration of replicators. 
Introducing (25) into (2a, 2b) we obtain the following system of differential 
equations 

*o=<Po-^o^o+I^x?J (26) 

x. = Xi (я, x0 x,- - b) (i = 1, 2, ..., ri) (27) 

Let J be a subset of Jt~ = {1, 2,..., n) composed of the first n natural integers, 
we define also J' = J/\f composed of those integers of Ж that are not 
contained in J, then Jf = / u / and Jr\J' = 0 (empty set). For a preselected 
set«/ we define a stationary state, denoted by S,, as follows 

Vie./: *,. > 0 and V/e/': $ = 0 (28) 

The stationary concentrations xh for / e / , are determined by (27) and we get 

* = — {29) 
a,.x0 

The stationary concentration x0 is determined by (26), we get 

* 6 - — *o + — = 0 (30a) 

% % 

where the positive constant c, is 
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О = I - (30b) 
i e.if a j 

The roots of the above quadratic equation (30a) have always positive real parts, 
they are real and positive if the following condition is fulfilled 

Ф^2(%с,У12 (31) 

It means that for a preselected stationary state S, the corresponding concentra­
tion x0 is positive only if the substrate inflow Ф0 is greater or, at least, equal to 
its threshold value 2(%с?)х'2\ if Ф0 is smaller than this value, then the stationary 
concentration x0 is complex. For Ф0 < 2(*ř£c,)1/2 we simply say that the station­
ary state S, does not exist, the subset J was improperly selected. 

In the case J = 0 (a stationary state for which all replicators are becoming 
extinct), the stationary concentration x0 is 

*o = ^ (32) 

For J Ф 0 the stationary concentration x0 is determined as a root of the 
quadratic equation (30a). Assuming that the condition (31) is satisfied then we 
get two positive stationary concentrations denoted by (x0)} and (Jč0)2, where 
(x0)i < (*o)2> (*o)i + (*о)г = фо/ %> and 0 < (x0)Ii2 < Ф0/ ¥J, their explicit form 
is 

W u - A f l i , _ i % ] (H, 
2 У Л V <% 

If the substrate inflow Ф0 is relatively in a great excess 

Ф о ^ ^ с , ) " 2 (34) 

then the approximate values of stationary substrate concentrations are 

(*o>2 * ^ (356) 

In order to determine the stability of the stationary state S^ (this state is 
determined by (28) for a preselected index subset J) we have to evaluate 
eigenvalues of the corresponding Jacobi matrix 
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f_0. 

*o 

\ o 
i = o 

-Щ 

WJ 

0 

je J 

0 

0 

-¥>. 
je J 

J(S<H "t s u n \ieJ m 

ief' 

We shall separately study the following two special cases: 
a) J = 0, this stationary state Se contains all replicator concentrations 

vanishing. The Jacobi matrix (36) is of the diagonal form, where all its diagonal 
entries are negative. Hence the stationary state Se is asymptotically stable. 

b) J — {/?}, the index subset J is composed of one element p. Now, the 
stability of this stationary state is determined by the eigenvalues of submatrix 
(cf. eqn (36)) 

Фо 

1£ 
(37) 

Its eigenvalues are determined as roots of the quadratic equation 

A2 + A(^-M + 2 ^ - ^ 4 = 0 (38) 
*5 ap л 'о 

We know that a quadratic secular equation has roots with negative real parts 
if and only if its coefficients are positive; hence the submatrix (37) has eigen­
values with negative real part iff the substrate inflow is restricted by 

х0Ьр<Ф0<^- (39) 
XQOP 

We shall check the above condition (39) for approximate values of x0 (cf. eqns 
(35a) and (35b)), the constant c, for J = {/?} is specified by cf = b\\ap. The 
substrate inflow excess condition (34) is 

*M>2b,ffi~ (40) 

The approximate value (35a) of the stationary substrate concentration is 
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Introducing this value into (39) we get that the right inequality is automatically 
satisfied and the left inequality gives 

ФЬ>ЬР№'~ (42) 
"\a, 

For the second approximate value of stationary substrate concentration (x0)2 

specified by (35b) we get from the right inequality of (39) the following condition 

which is inconsistent with the excess condition (40). Summarizing, the stationary 
state S,, for J = {p} is properly selected if the substrate inflow satisfies, in 
general, the condition (31), now specified for the present case as follows 

This properly selected stationary state is asymptotically stable if the substrate 
inflow is, moreover, ranged by the condition (39). The situation is much more 
simpler for a great excess of substrate inflow Ф0, see eqn (40). Here, the 
stationary state S, with (x0), is asymptotically stable if the substrate inflow 
satisfies inequality (42) whereas the stationary state S, with (x0)2 is unstable. 

c) \J\ ^ 2, the index subset J is composed of two or more indices. We 
assume that for this index subset the quadratic equation (30a) has positive roots, 
i.e. S, is properly selected. The stability of this state is determined by the 
eigenvalues of a submatrix of Jacobi matrix (36) 

Фо 

3 - Stbj he J 

y' = 0 je J 

Its eigenvalues are determined as roots of the following equation 

xij€j aj(bj- X) x0 

It is easy to show that it has at least one positive root (Fig. 4), hence the 
stationary state S^, for \S\ ^ 2, is unstable. 
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To conclude this section we summarize the obtained main result. First, the 
properly selected stationary states S„ where \J\ ^ 2, are unstable. Second, the 
stationary states S„ where \J\ = 1, may be asymptotically stable as well as 
unstable, this is fully determined by the inequalities (39). The situation is slightly 
more transparent assuming the great excess of the substrate inflow Ф0, cf. eqn 
(40). Here is a greater hope that the condition (42) is satisfied whereas the second 
one (43) is inconsistent with the assumption of excess of substrate inflow Ф{). 

Fig. 4. Graphical solution of the nonlinear eqn (46). the l.h.s. is denoted by F(A), its positive singular 
points are represented by dashed lines. The r.h.s. corresponds to the straight line q. We can see that 

for |./| ^ 2, the equation has at least one positive root. 

Third, the stationary state S„ for J = 0, is asymptotically stable without 
restriction conditions. The last two items imply that we have a class 
{S,;!^! = 0,1} of stationary states that are simultaneously asymptotically sta­
ble. Which stationary state among them will win in the course of time evolution 
of the system? This is dependent on the initial state. The whole nonnegative 
orthant of phase space can be divided into nonoverlapping attractivity domains 
of single asymptotically stable stationary states S,. If an initial state is taken 
from a given attractivity domain of stationary state S„ then the corresponding 
trajectory is asymptotically ending in this stationary state S, as f-*oo, or in 
other words, this state will win. This selection process is of the "once-for-ever" 
type, no small concentration fluctuation can produce a transient process of 
crossing from the given stationary state to another one. 
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3. Michaelis—Menten kinetics model of selection 

This model of selection is based on the assumption that the functions/(л:,) 
from (2a, 2b) are positive, differentiable and monotonously decreasing, and 
moreover, the products xf,(Xj) are increasing functions 

/,(*,) > 0 /;(*,) > 0 (*/,(*,))' > 0 ( I = 1 , 2 , . . . , / I ) (47a) 

and the functions g,(Xj) are positive and constant 

&(*,.) = ft,->0 ( I = 1 , 2 , . . . , / I ) (47b) 

For instance, in the Michaelis—Menten kinetics the functions/(x,) look as 
follows 

/,(*/) = - г * - W 
<*i + xi 

where ax and a- are positive constants, this type of functions satisfies general 
requirements (47a)\ therefore we shall call the present approach the Michaelis 
—Menten kinetics model. In the framework of Eigen's "constant population" 
model [1] the above type of rate functions was initially studied by Epstein [19] 
and Hofbauer et al. [20]. 

The differential equations (2a, 2b) are 

x0 = Ф0 - x0(% + £ */,(*,)) (49a) 

x, = *, (xj-, (x,) - b,) ( / = 1 , 2 , . . . , « ) {49b) 

For a preselected index subset J (see Section II. 2) the stationary concentrations 
Xj fulfil the conditions (28), then from (49b) we get for each / e / 

where the functions /-(л) are positive and monotonously decreasing. Assuming 

— < min F((0) (51) 
X0 ieS 

then the solution of (50) is 

x, = Frx l^\ (for each i e J) (52) 

where the inverse function F{~
] (x) is also positive and decreasing in the interval 
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[/7(00), /^(0)]; for simplicity we put F~* (x) = 0, for x $s F,(0), then such extend­
ed function is defined on (/-(oo), oo) (Fig. 5). The positive stationary concentra­
tion x0 is determined by (49a) 

where 

Ф0 - x0 % = //, (j) 

HAQ=Y.b,Frx(?> 

(53a) 

(53b) 

is monotonously decreasing function defined for 

£ ^ max/7(00) 
ie.f 

and 

// ,(£) = 0 for ^ m a x / v ( 0 ) 

(54o) 

(546) 

Let us rewrite eqn (53a) in an equivalent form 

1 
ф0--% = нл& (55) 

Ff (0) 

1 

F; M 

A 
i 

_i 

- I 
/7«-) f F,(0) 

F/g. 5. An illustrative plot of the functions Ffá) and Fj~\^) determined by {50) and {52), respectively. 
From the diagram {A) we can immediately deduce that eqn {50) has a positive solution only if the 

condition {51) is satisfied. 
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This equation is graphically illustrated in Fig. 6, we can see that it has a positive 
solution l/x0 ranged by 

- ^ < — < max 7 (̂0) (56) 
<J>o * o ieJ 

The right inequality is consistent with the condition (57), therefore the relation 
(56) may be rewritten in the following more sharper form 

^ < — < min 7 (̂0) (57) 
Ф 0 X0 ie.f 

Hence, the positive solution l/x0 of (55) exists only if the inequality is satisfied 

-^<min/v(0) (58) 
Ф0 i e.f 

This very important relation (containing only parameters of system) may be 
taken as a simple criterion whether the index subset J was properly selected or 
not. In the negative case we say simply that the corresponding stationary state 
does not exist. 

The Jacobi matrix of the system (49a, 49b) evaluated for the stationary state 
S/ (assuming that the condition (57) is satisfied) is 

~ - x0\fj(xj) + xjjixj)] - З Д 0 ) \ 7 = 0 

xJi(xt) 30х0х,.Л(х;) 0 I isJ {59) 

0 0 SylxJW + b,]/ ieJ' 

7 = 0 je J je J' 

It has a block-triangular form, therefore the right-down block (for i.jeJ') 
should have negative entries 

max/v(0)<— (60) 

Combining the relation (51) we get the following range for l/x0 

maxf-(O) < — < min 7 (̂0) (67) 
i e J ' X0 ieS 

The eigenvalues of the left-up block (for i Je Ju {0}) are determined as roots 
of the equation 

У *//(*/) *) fófo) + *,/;(*,)] = A + Фо (62) 

'*' *0*i/7(*/) - Я xQ 
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Since the terms placed in brackets are always positive (cf. assumption (47a)), the 
above equation has roots with negative real parts (Fig. 7) if the following 
inequality (obtained from (62) for Я = 0) is satisfied 

ieJ / f ( * , ) X0 

which can be simply verified remembering that £ xj,- (*,) = Ф0/х0 — % and 
/е./ 

f'i(x,) < 0. Hence, the asymptotical stability of the stationary state S, is fully 
determined by the right-down block of the Jacobi matrix (59), i.e. the condition 
(61) should be fulfilled. 

Fig. 6. Graphical solution of the nonlinear eqn Fig. 7. Graphical solution of the nonlinear eqn 
(55), we can see that the lines corresponding to (62), its l.h.s. is denoted by F(X), the negative 
the l.h. and r.h. sides have a common point if the singular points of this function are represented 
condition (56) is satisfied, it corresponds to the by dashed lines. The r.h.s. is represented by the 

solution \/x0. straight line q. One can see that the roots of (62) 
are always negative. 

Summarizing the obtained results, in the set of all positive stationary states 
{S,} are asymptotically stable only those ones which are satisfying the crucial 
condition (61). It means that the Michaelis—Menten kinetics model of selection 
does not satisfy the criterion of genuine Darwinian selection, i.e. a surviving of 
the only "best-fitted" replicator. In the present model many replicators may 
survive simultaneously. 

218 Chem. Papers 43 (2) 201—228 (1989) 



PHYSICOCHEMICAL MODEL OF SELECTION PROCESSES 

4. Selection model with intrareplicator antagonism 

In the original Ebeling's model (see Section II. 1) the replicators are decaying 
linearly with respect to their concentrations, or kinetically, this process is 
controlled by the first-order kinetics. Assuming that the replicators are decom­
posed by another type of kinetics with order higher than of the first one, we have 
introduced, in fact, an antagonism among replicators of the same type. The 
above verbal formulations are represented formally as follows: The functions 
fi(Xj) are equal to positive constants, and £,Сх,) are positive and monotonously 
increasing 

/.(*/) = */><> (64a) 

£,.(*,) > 0 and £,'(*,) > 0 (64b) 

for / = 1,2, ... , n. In a more simpler form (in particular, for g,(x,) = 6,JC,) this 
type of selection was initially studied by Ebeling and Feiste I [10]. 

Introducing (64a, 64b) in (2a, 2b) we get the following system of differential 
equations 

х0=Ф0-х0(%-£ч^ (65a) 

x,- = xf (at x0 - g i (x,.)) ( / = 1 , 2 , . . . , л ) (65b) 

For a fixed subset of indices J the stationary state S, is composed of positive 
stationary replicator concentrations (x, > 0, i e J) determined by (65a) as fol­
lows 

Gi(xi) = -gi(xi) = x0 (66) 

If the stationary substrate concentration x0 is bounded from below by (Fig. 8) 

maxG,(0) < x 0 (67) 
ieS 

then eqns (66) are solved as 

*,. = СгЧ*о) (68) 

where «J,"1 (£) is an inverse function defined in the interval 0 ^ č, < (J,(OO), and 

G-' ( 9 = 0 (for 0 < £ ̂  G,-(0)) (69) 
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The stationary substrate concentration x0 is determined by (65a), we get 

where 

^ > - f 0 = tf,(x0) 

яда = i *,(?,-'(a 

This function defined in the interval 

0 ^ £<minG,(oo) 
is J 

is monotonously increasing, and 

H j (£) = 0 (for 0 ^ 4 < min G, (0)) 
/ e / 

(70a) 

(70b) 

(71a) 

(71b) 

G - ' U I n 

&j(0) C ((~) — / 

F/g. 8. An illustrative plot of the functions G,(^) and Gf'(£) determined by (66) and (6#), respective­
ly. From the diagram (A) we can see that a positive solution of (66) exists only if the condition (67) 

is satisfied. 

The relation (70a) has a positive solution JČ0 (Fig. 9) ranged by 

m i n G , ( 0 ) < x 0 < ^ (72) 

Hence, the positive solution x0 of (70a) exists if the following inequality is 
satisfied 

m i n G , ( 0 ) < ^ 

220 

(73) 
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The relation (72) may be combined with (67) in a more sharper form 

maxG,(0) < x0 < —-
% 

(74) 

It can serve as a condition for positive solutions of stationary concentrations „x,-
(for i e J) as well as x0. If this condition is satisfied, then the stationary state S, 
was properly selected, in the opposite case we say that this state does not exist. 

Fig. 9. Graphical solution of the nonlinear eqn 
(70a), the intersection of the lines determines the 
positive solution л0 if the condition (72) is satis­

fied. 

The Jacobi matrix of the system (65a, 65b) evaluated at the stationary state 
Sir is 

J(S,) = 
a,x0 

0 

- a,x. 'ул0 - OjXo / = 0 

0 M^Xo-MO)) I ieS' 

(75) 

j = 0 je J j e J' 

Similarly as in the previous section (II. 3) this matrix is of triangle-block 
structure. The right-down diagonal block (for i.jeJ') has negative eigenvalues 
if its entries are negative 

x0 < min<j,(0) (76a) 

The eigenvalues of the left-up block (for i,jeJyj {0}) are determined as roots 
of the equation 

ЩХ,Хо - * - X 
ieJ XiffiXi) + Я X0 
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Recalling that f](x) > O, for each Í G / , we can simply demonstrate that the 
roots of (76b) have always negative real parts. It means that asymptotical 
stability of the stationary state S y is fully determined by the condition (76a), by 
its combination with the left inequality (74) (for S, to be existing) we get 

max G,(0) <x0< min G,(0) (77) 

From the above considerations we have obtained that a stationary state S, 
(where the subset J was properly selected) is asymptotically stable only if the 
stationary substrate concentration x0 is ranged by (77); the question which 
stationary state will win depends on the initial concentrations, whether they are 
placed inside of attractivity domain of Sy. 

5. Summary of results 

We have studied different models of selection process between replicators 
based on the general equations (2a, 2b). The following three quite distinct 
behaviours of the replicator system were obtained: 

7. The functions/(x,) and gj(Xj) are positively constant (Section II. 7), then 
we have proved that the replicator system is owned by the only asymptotically 
stable stationary state Sp, all remaining stationary states {Sq; q ф p) are unstable. 
It means that the replicator system simulates the so-called Darwinian selection 
[21], only that replicator Xp will survive which is "best-fitted" for the selection 
process, i.e. its ratio ap/bp composed of replicating and decaying rate constants, 
respectively, is the largest, see eqn (77); all other replicators {X ;̂ q ф p} are 
becoming extinct as t ->oo. 

2. The functions/ (.Y,) linearly depend on the replicator concentrations JC, and 
the functions gi(x{) are constant, see eqn (26). It was proved that for this model 
of selection from the set of stationary states {S ,} those states are asymptotically 
stable that are containing only one nonvanishing replicator (i.e. \J\ = 1); all 
stationary states Sy, where \J\ ^ 2, are unstable. The positive orthant of phase 
space can be divided into nonoverlapping domains of attractivity of individual 
asymptotically stable stationary states. If an initial state belongs to a given 
domain, then whole trajectory of the system is situated at the domain and will 
end at the corresponding stationary state as r->oo. It means that in this model 
a Darwinian selection does not exist. The time evolution of the system is fully 
predetermined by its initial state, or in other words, the only replicator asymp­
totically surviving as r->oc is sharply designed by the initial conditions. The 
obtained solution is of a "once-for-ever" type, there is no chance for other 
replicators (asymptotically vanishing) owing to small perturbations (pr fluctua-
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tions) of their concentrations to survive with respect to the former already 
survived replicator. Such an event needs a "giant" fluctuation of concentrations 
the fact of which is highly physically unprobable. 

3. The Michaelis—Menten kinetics model (Section II. 3) or the model with 
intrareplicator antagonism (Section II. 4) give almost the same qualitative 
features of the studied replicator system. In the present case several replicators 
may survive simultaneously whereas the remaining ones are becoming extinct as 
/-•oo. Theoretically, a set {S }̂ of simultaneously asymptotically stable station­
ary states can be composed of more than one state, therefore, that one will win 
in which attractivity domain of the initial state is placed. The conditions (61) or 
(77) are usually very sharp, they are fulfilled only for one index subset J, hence 
the system contains only one asymptotically stable stationary state S,. 

The qualitative features of the studied system are very sensitive to the form 
of rate functions/(*,) and #,(.*,). The genuine Darwinian selection is simulated 
only by the model (Section II. 1) in which the above functions were kept positive 
and constant. 

III. Selection of complementary replicators 

The Ebeling's model of selection (Section II. 1) will be now generalized for 
a system composed of the so-called complementary replicators (a replicator is 
replicated to its complementary counterpart, see below). The problem of selec­
tion of complementary replicators was studied by Eigen [1] in the framework of 
his "constant population" approach, see also [4, 7]. 

Let us consider a system of a substrate X0 and two sets of complementary 
replicators X,+ , Х2

+,...,Х+ and X,", X2~,...,X~ The pattern of chemical 
reactions (II. la—Id) is specified as follows 

(la) 

(lb) 

(1c) 

(Id) 

(le) 

ил 
223 

R,: 

R2: 

A,+ : 

A": 

B,+ : 

В,": 
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for / = 1, 2, ..., п. We have assumed, for simplicity, that the rate constants of 
replication and decay for couples of complementary replicators are the same. 
The corresponding system of differential equations is (cf. eqns (II. 4a—4b)) 

x0 = Ф0 - x0[% + t */(*/+ + * r ) ] <2*) 
x? =а;Х0х~ - bfx+ (2b) 

x~ =а;Х0х+ -biX~ (2c) 

for / = 1, 2, ..., n. Let us introduce new dynamical variables for replicators 

w, = x? + x~ (3a) 

v. = x+ - x~ (3b) 

then the differential equations (2a—2c) are 

х 0 = Ф 0 - х 0 ( Ч + £ я , ц ) (4a) 

и, = и{(а{х0-Ь() (4b) 

v^Vifaxo + bi) (4c) 

The stationary states of the system are of the following two kinds: 
1st kind. The stationary concentration JČ0 is positive whereas stationary values 

of й„ w2,..., w„ and vb v2, ..., v„ are vanishing 

*o = -£ (5a) 

o, = ř/ = 0 ( i = l , 2 , ,л) (5b) 

This stationary state will be denoted by S0. 
2nd kind. For preselected 1 ^ p ^ n stationary concentrations x0, x+ and x~ 

are positive whereas all others are vanishing, i.e. 

x0 = ^ (6a) 

v, = 0 (6c) 

for / = 1, 2,..., n. The stationary value йр should be positive, hence an analogue 
of eqn (II. 9) must be fulfilled 
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Фо Ь, 
(7) 

This stationary state will be denoted by Sp. 
The Jacobi matrix of {4a—4c) evaluated at stationary states S0 and S,, (where 

1 < p ^ n) is 

J(S0) = | " " ° ^ о / ° I (8a) 
0 

0 

< * • 

0 

-A 

-4*4 
Ъат 0 
aP 

J(S") = ( (Ф°%~%)ер d g ( ř a " * ) ° I (Щ 

'p ' ™p 

0 0 

The Jacobi matrix J(S0) is of a triangular form, its eigenvalues are its diagonal 
elements, all its eigenvalues are negative if the following condition is satisfied 
(see eqn (II. 13)) 

- ^ > max -' (9) 
Ф 0 K'"<" bi 

The stationary state S0 is asymptotically stable if the above inequality is fulfilled. 
The Jacobi matrix J(Sp) has block-diagonal structure, its right-down block is 

diagonal with negative entries. The left-up block is formally identical with the 
Jacobi matrix (II. 16), therefore the stationary state Sp is asymptotically stable 
if an analogue of eqn (II. 17b) is satisfied 

^ < ^ = m a x *' (70) 

In an analogous way as was done for Ebeling's model (see Section II. 1) we 
have proved that among stationary states S0, S,,..., S„ either S0, if (7) is satisfied, 
or S, state (where 1 ^ p ^ n), if (70) is satisfied, is asymptotically stable; since 
these conditions are mutually excluding the system of complementary replica-
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tors has the only asymptotically stable stationary state S0 or Sp. Returning to the 
original concentration variables, the stationary concentrations of Sp are 

о = ^ {Ha) Xn = 
aP 

-r=^ = ]-sJ^-^) (/=U2 я) (Hb) 
2 f\bp apJ 

Hence, we have proved, the generalization of the original Ebeling's model by the 
concept of complementary replicators did not introduce new qualitative features 
of the selection process. 

IV Comparison with Eigen's theory 

The Eigen phenomenological equations for the selection are [1] 

у. = у.^.-ф) (la) 

Ф = 1 £ vv/>V (76) 
с /=i 

where y,- 's are replicator concentrations constrained by the so-called "constant 
population" condition 

t, У> = с = c o n s t (2) 
i = i 

and Wj 's are decomposition rate constants. 
It was demonstrated that in the framework of Eigen's selection model the 

replicator system manifests typical selection properties, to survival of a replica­
tor X^ and to the extinction of all its competitors X,,... ,ХЛ_„ X/J+1,..., X„ if the 
index p is determined by 

\\> = max vr, (3) 

We focus our attention on the problem of the relation between the Eigen 
approach and the theory presented in this communication. The differential 
equations (II. 18a—18b) of Ebeling's model can be rewritten in the form 

УО=-У1(ФОУО- í а,-у,- - f 0 ) (4a) 

ýi = yMi - y0bi) (i = 1, 2, . . . , n) (4b) 
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In order to relate these equations with the Eigen system (la—lb) we put % = 0 
and hx = 1 (for / = 1 , 2 , , n), we get 

/ = i 
Л = - yl [фоУо - E а,уЛ (5a) 

У, = У,(о,- - Л ) (i = 1, 2, ..., и) (56) 

Let us postulate that the concentration y0 is determined by the condition 

У) + Уг + + У n = O» t n e n fr°m (5b) we get 

Уо-ÍÍy) ' t а(Л (ö) 
\ / = 1 / 1=1 

The time derivative of y0 determined by the above formula is 

ýo = ( t y ) 1У^-УО)2^0 (7) 

This time derivative ý0 also satisfies the relation (5a), it determines uniquely the 
inflow Ф0 of X0 (now as a time-dependent function) 

/ = ] 

where ^0 is determined by (6). We can see that the present theory reduces to the 
Eigen approach if (i) all rate constants 6, are equal and (ii) the inflow Ф0 is a 
time-dependent function controlled by actual concentrations of replicators, see 
eqn (8). 

V Conclusion 

It was demonstrated that in the system of replicators the selection processes 
are very sensitive to actual form of rate functions. The genuine Darwinian 
selection among replicators exists if the rate functions are positive and constant. 
Another type of rate functions gives rise to the processes that are not Darwinian, 
for example, the resulting asymptotical state is predetermined by initial con­
centrations. This very serious conclusion considerably increases the potential 
applicability of Ebeling's approach for theoretical studies of selection processes 
on molecular level. We have introduced in the standard model a process of the 
substrate decomposition, it removes the possible "catastrophic" state of original 
Ebeling's model where all replicators are becoming extinct whereas the substrate 
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is linearly increasing to infinity. The considered model was compared with the 
Eigen's model of selection based on the "constant population" constraint; we 
have demonstrated that if the external inflow of substrate is a time-controlled 
function, then we have arrived at Eigen's phenomenological equations. 
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