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On the basis of thermodynamic relationships relation between the radius
of curvature of liquidus curve at the melting point of a compound and the
degree of thermal dissociation of this compound is derived. The method
enables to obtain information on the degree of dissociation of compound
Z = AB from phase diagram data. Accuracy of the result obtained in this
way depends on the accuracy of determination of temperature of solid—
liquid equilibrium in the vicinity of melting point of the compound.

Ha ocHOBe TepMOIHHAMHYECKUX COOTHOILIEHHH BbIBEIEHA B3aHMOCBS3b
MeXIy paauyCcoM 'KPDHBH3HBI KDHUBOH JIMKBHIyca B TOYKE IUIABJICHHA
BEIlECTBA H CTENEHBIO TEPMHYECKOH [HCCONHMAIMM 3TOTO BELIECTBA.
JlaHHBIH METOX MMO3BOJISET NMOJYYHTh HHPOPMAIHIO O CTENEHH AUCCOIMa-
iy BelecTBa Z = AB ucxoas u3 gaHHbIX pa3oBoit nuarpaMMel. ToyHOCTH
TakuM 00pa3oM TOJYyYEHHBIX pE3YJbTaTOB 3aBHCHT OT TOYHOCTH
OnpeneNieHusl TEMIIEpaTypbl PaBHOBECHS TBEPHOW M XHMIKOH ¢a3bl B OK-
PECTHOCTH TOYKH IIJIABJICHUS JAHHOT'O COEOUHEHHUS.

The phenomenon of thermal dissociation of compounds plays an important
role both in the theoretical and experimental study of phase equilibria. A direct
experimental determination of this quantity, e.g. by Raman spectroscopy, needs
a special apparatus and at high temperatures it is very difficult. The indirect
methods for determination of the degree of thermal dissociation are based on
more common experimental procedures and in many cases they provide results
comparable with those obtained by the direct methods.

The determination of the degree of thermal dissociation on the basis of the
curve of solid—liquid equilibrium has been for special cases investigated by
LeChatelier and Rosenbaum (cited according to [1]), later by Lewis and Randall
[2] and Schottky [3]. From the Soviet school the works of Mlodzeevskii [4] and
Esin [5] should be mentioned. In this paper we will present a new treatment of
this problem.
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Derivation of the basic relationship

The derivation of the relationship between the degree of thermal dissociation
of chemical compound and the radius of curvature of the liquidus curve is based
on the application of the LeChatelier—Shreder equation to description of the
liquidus curve of the compound Z = AB in the system A—B. It is assumed that
the system is thermodynamically ideal and no solid solutions are formed on the
basis of compound Z. From the mathematical point of view we will analyze the
well-known fact that in this case there is no singular point on the liquidus curve
of compound Z, i.e. the slope of the tangent to the liquidus curve of compound
Z at its melting point equals zero. The influence of temperature on the dissocia-
tion constant in the vicinity of melting point of the compound is neglected.

Let us denote the degree of dissociation of pure compound Z at its melting
point as b,. Then after melting 1 mole of compound Z it remains (1 — b,) moles
of this compound in original state and b, moles of component A and b, moles
of component B are formed. Because we assume an ideal behaviour the activities
of components equal to the mole fractions. Thus

az)y=1=%  4A)=aB)=2
1+ b, 1+ b,

0]

and the equilibrium constant K° of the thermal dissociation of pure compound
Z is given by the equation
ko _ GA)aB) _ B}
a(Z) 1—b;

&)

In the case of mixture prepared by weighing-in x moles of compound Z and
(1 — x) moles of component A, the melt consists of x(1 — b) moles of Z, xb
moles of A, xb moles of B (these originate from dissociation of compound Z)
and (1 — x) moles of A which were weighed-in. The letter b denotes the degree
of thermal dissociation of compound Z in the mixture Z—A. Generally it holds
b # b,.

The activities of components equal

(1-20) xb+1—x xb

x
Z—A) = , a(A—Z) = ————, a(B—2Z) = 3)
a( ) 1 +xb o ) 1+ xb ( ) 1 + xb

and the dissociation constant of component Z in the mixture Z—A equals
(xb+1—x)b

K(Z—A) =
(1 — b)(1 + xb)

4
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It follows

x=1 x—1\' 1 K
b= +\/< )+——-——= g forx#0 5
2x 2x x1+K /6 B x ©)

The generalized LeChatelier—Shreder equation for solid—liquid equilibrium
states

— AfIfus 7;'us‘h
AI'Ifus - R];"us.h Ina

= ¢(a) (6)

where T;, is the hypothetical temperature of fusion of absolutely undissociated
chemical compound Z and AHj, is the enthalpy of fusion of this compound.

The activity of compound Z in the molten mixture with the other component
(eqn (3)) will be denoted as

=)c(l —b)

a(Z
2) 1+ xb

= y(x, b) )
Thus it holds
T = ¢(a) = oLy (x, b)] = ¢lx, f(x, K)] ¥

When we assume that the dissociation constant X does not depend on tem-
perature in the vicinity of melting point, it holds for the maximum on liquidus
curve

dr _dTda_, )
dx da dx
We can derive that
? = RAHfus Tt'%s,ha_l(AHfus - RTI"us,h ln a)—2 ?"- 0 (10)
a
da_dadx 0adb_, )
dx Oxdx 0bdx
It follows that )
x—1 _ K
d_a= 1-5 _ 1+ x 2x K+1=0 (12)
dx (1 +xb?  (1+ xb) 2xC
where
_1\2 112
c- [(" ‘) +li] (13)
2x xK+1
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X
lim b = by = _|——— 14
B N (14

By solving eqns (/2) and (/4) we obtain
X1 =b) —x(1 —b) =0 (15)

According to the assumption which has already been given at the relationship
(5) x #0. Therefore eqn (15) can be divided by x and we obtain

x(1=b)—(1=b)=(1-b)(x—-1)=0 (16)

For b,e(0, 1) the expression | — b} differs from zero and therefore eqn (15) is
fulfilled only for x = 1. It means that the maximum exists on the liquidus curve
only at the melting point of compound Z.

In the next we will analyze the maximum and calculate the radius of cur-
vature of the liquidus curve at the point x = 1.

As it is known it holds

From eqn (5) it follows

2 2 2 2
&7 _ 4_T<d_“) 44 da (17)
dx? da®\dx da dx?
Thus for x — 1 da/dx = 0 and it follows
2 dT d?
im 47— tm [ 42 42] 8)
=1dx? x-1|Lda dx?

The term d7/da can be readily determined from eqn (6). Calculation of the term
d’a/dx? is more complicated and therefore we will present only the final result.
It holds

2 —_—
lim d'a = _ -1 19
=1dx?  2by(by+ 1)
After introducing eqn (/9) into eqn (/8) we obtain
. d’T [ 1-— bo]‘z 1
lim — = — RAH; T2.| AHg, — RTjyp In —<0 (20)
xl_l;r} dx2 fus 4 fus,h fi fus,h 1+ bo 2b0

This proves that the analyzed extreme is a maximum. Simultaneously it follows
that the liquidus curve of the system A—AB cannot have an inflex point at
x=1.

The absolute value of the radius of curvature of the analyzed liquidus curve
for x —» 1 can be determined from the relationship

d’r\™"
(&)
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After introducing from (20) we obtain

I — B, T
2bo AI{fus - RT;‘u&h In
. 1 + b,
limr = 5
x~1 RAHfus 71fus.h

(22)

We may multiply the expression (22) by AHy,/JAH,,,. After rearrangement and
simplification we obtain

limr=r,= 2boA Hie (23)
il 4 -

where T, .,, is the temperature of fusion of compound Z determined experi-
mentally. It follows that eqn (23) allows us to determine the degree of thermal
dissociation b, of pure compound when we know r,.

Determination of the radius of curvature

The radius of curvature of the liquidus curve at the melting point can be
determined either from experimental data in numerical form or from the graph
of the liquidus curve in phase diagram.

For determination of r, from numerical experimental data the liquidus curve
can be approximated at the vicinity of point x = 1 by parabola (Fig. 1). Axis of
the parabola is parallel with the axis y (this is the axis of temperature) and its
vertex has coordinates (1, T, .,)- Equation of the parabola is (x —m)* =
= —2p(y — n). In our case m = 1, n = Ty .,, and therefore

(x =17 = =2p(y — Ts.exp) (29)
After rearrangement and substituting 1/p = ¢ we obtain
Y = T exp + ¢(—0.5x% + x — 0.5) 25)
Because the radius of curvature at the extreme equals r = |1/y”| it holds
r=p=1/c (26)

. Texp
Fig. 1. Part of the phase diagram of the system

A—B in which a congruently melting compound
Z = AB s formed. In the vicinity of melting point
of the compound liquidus curve is approximated
by parabola. x=0 x=1

Circle is drawn with the radius r,. A Z=AB B
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The corresponding values of the parameters p or ¢ can be determined using the
least-squares method. When we denote the experimental points on liquidus
curves (x;, T) (they must lie in the vicinity of extreme) we can obtain for the
radius of curvature the relationship

Y. (0.5x? — x; + 0.5
ro — - i=1 (27)
Z (T;us.exp - T{)(O.Sxf —X;+ 05)
i=1

n is the number of experimental data used in the calculation.

Test of application of the derived relationship

Correctness of the proposed method of calculation of the degree of thermal
dissociation of a compound from the radius of curvature of the liquidus curve
was numerically tested for the model system having these properties: the system
consists of two components A and B which form congruently melting com-
pound Z = AB. The system can be divided into two simple eutectic subsystems
A—Z and Z—B. The following values of the temperatures and enthalpies of
fusion of components were assumed: Tj,, = 1300K, T;,p=1200K,
AHg, o = 32800J mol™', AHy,, s = 25200J mol~'. AHy,, , was estimated to be
58800 J mol™". Ty exp.z = 1700K (this approximately corresponds to the rule
that for each atom in compound the change of entropy of fusion
AS;,, = 8.5J K=" mol™"). The degree of thermal dissociation of pure compound
was chosen to be b, = 0.5. Using these data the liquidus curve of component Z
was calculated using the procedure described in [6]. On the basis of these data
the radius of curvature of liquidus curve at the melting point was calculated
according to eqns (23) and (27). The latter relationship gives the value
by = 0.49925 which may be considered as proof of correctness of the presented
approach.

The method was tested for the case of the system NaF—Na,SO, in which a
congruently melting compound Na,FSO, is formed. In paper [7] the degree of
thermal dissociation of this compound was determined to be b, = 0.73. Using
the experimental data [8] and the relationships derived in this work we obtained
by = 0.62. It follows that the accuracy of determination of the degree of thermal
dissociation remarkably depends on the precision of measurements of the
temperature of solid—liquid equilibrium. A more detailed analysis showed that
the method gives satisfactory results when the temperature is determined with
precision better than +0.5K.
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