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On the basis of thermodynamic relationships relation between the radius 
of curvature of liquidus curve at the melting point of a compound and the 
degree of thermal dissociation of this compound is derived. The method 
enables to obtain information on the degree of dissociation of compound 
Z = AB from phase diagram data. Accuracy of the result obtained in this 
way depends on the accuracy of determination of temperature of solid— 
liquid equilibrium in the vicinity of melting point of the compound. 

На основе термодинамических соотношений выведена взаимосвязь 
между радиусом' кривизны кривой ликвидуса в точке плавления 
вещества и степенью термической диссоциации этого вещества. 
Данный метод позволяет получить информацию о степени диссоциа­
ции вещества Z = AB исходя из данных фазовой диаграммы. Точность 
таким образом полученных результатов зависит от точности 
определения температуры равновесия твердой и жидкой фазы в ок­
рестности точки плавления данного соединения. 

The phenomenon of thermal dissociation of compounds plays an important 

role both in the theoretical and experimental study of phase equilibria. A direct 

experimental determination of this quantity, e.g. by Raman spectroscopy, needs 

a special apparatus and at high temperatures it is very difficult. The indirect 

methods for determination of the degree of thermal dissociation are based on 

more common experimental procedures and in many cases they provide results 

comparable with those obtained by the direct methods. 

The determination of the degree of thermal dissociation on the basis of the 

curve of solid—liquid equilibrium has been for special cases investigated by 

LeChatelier and Rosenbaum (cited according to [1]), later by Lewis and Randall 

[2] and Schottky [3]. From the Soviet school the works of Mlodzeevskii [4] and 

Esin [5] should be mentioned. In this paper we will present a new treatment of 

this problem. 
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Derivation of the basic relationship 

The derivation of the relationship between the degree of thermal dissociation 
of chemical compound and the radius of curvature of the liquidus curve is based 
on the application of the LeChatelier—Shreder equation to description of the 
liquidus curve of the compound Z = AB in the system A—B. It is assumed that 
the system is thermodynamically ideal and no solid solutions are formed on the 
basis of compound Z. From the mathematical point of view we will analyze the 
well-known fact that in this case there is no singular point on the liquidus curve 
of compound Z, i.e. the slope of the tangent to the liquidus curve of compound 
Z at its melting point equals zero. The influence of temperature on the dissocia­
tion constant in the vicinity of melting point of the compound is neglected. 

Let us denote the degree of dissociation of pure compound Z at its melting 
point as b0. Then after melting 1 mole of compound Z it remains (1 — b0) moles 
of this compound in original state and b0 moles of component A and b0 moles 
of component В are formed. Because we assume an ideal behaviour the activities 
of components equal to the mole fractions. Thus 

fl(Z) = i ^ f fl(A) = a(B) = -±Z- (1) 
1 + b0 l+b0 

and the equilibrium constant K° of the thermal dissociation of pure compound 
Z is given by the equation 

jp = fl(A)g(B) = b2

0 

a(Z) 1 - bl 

In the case of mixture prepared by weighing-in x moles of compound Z and 
(1-х) moles of component A, the melt consists of x(l — b) moles of Z, xb 
moles of A, xb moles of В (these originate from dissociation of compound Z) 
and ( 1 - х ) moles of A which were weighed-in. The letter b denotes the degree 
of thermal dissociation of compound Z in the mixture Z—A. Generally it holds 
b*b0. 

The activities of components equal 

, _ A 4 x(\ - b) xb+l—x , rj. xb 

a(Z—A) = — -, a(A—Z) = — , a(B—Z) = (5) 
1 + xb 1 + xb 1 + xb 

and the dissociation constant of component Z in the mixture Z—A equals 

= ( * * + ! - Ф {4) 

(1 -b)(\ +xb) 
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It follows 

b = ±-± + / ( í ^ Y + I - Ä I = f(x, K) for x Ф О (5) 

The generalized LeChatelier—Shreder equation for solid—liquid equilibrium 
states 

ALT T 

T=——fu;;us-h , = * * о (6) 
A# f u s -/ř r f u s h ln t f 

where Tfllsh is the hypothetical temperature of fusion of absolutely undissociated 
chemical compound Z and A# f u s is the enthalpy of fusion of this compound. 

The activity of compound Z in the molten mixture with the other component 
(eqn (5)) will be denoted as 

a(Z) = ^—^=¥(x9b) (7) 
1 +xb 

Thus it holds 

T = cp(a) = <p[¥(x, b)] = ф[х9 f{x, K)] (8) 

When we assume that the dissociation constant К does not depend on tem­
perature in the vicinity of melting point, it holds for the maximum on liquidus 
curve 

äľ=dľda = 0 ( 9 ) 

dx da dx 

We can derive that 

— = RAHrusT*sMa-\AHfus - RTrusMlna)-2 Ф 0 (10) 
da 

da _ da dx da do _ (1 ~ 

dx dx dx db dx 

It follows that 

x - 1 К 
C + -

da _ 1 - b _ 1 +x 2x K+ 1 = (]2) 

d x ~ ( l + j c 6 ) 2 (1 -h JC6)2 2xC 

where 

LV 2x J xK+l] 
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From eqn (5) it follows 

\imb = b o= / — — (14) 

By solving eqns (12) and (14) we obtain 

x2(l - b]) - x(\ -bl) = 0 (15) 

According to the assumption which has already been given at the relationship 
(5) x #0 . Therefore eqn (75) can be divided by x and we obtain 

x(\ - bl) - (1 - bl) = (1 - bl)(x - 1) = 0 (76) 

For b0e(0, 1) the expression 1 — bl differs from zero and therefore eqn (75) is 
fulfilled only for x = 1. It means that the maximum exists on the Hquidus curve 
only at the melting point of compound Z. 

In the next we will analyze the maximum and calculate the radius of cur­
vature of the Hquidus curve at the point x = 1. 

As it is known it holds 

№=№(drf + dT#a 

dx2 da2 \dx) da dx2 

Thus for x -• 1 da/dx = 0 and it follows 

_dadx2J 
lim = lim 
— ' d x 2 *- ' 

The term dT/da can be readily determined from eqn (6). Calculation of the term 
d2a/dx2 is more complicated and therefore we will present only the final result. 
It holds 

lim ^ = b ° - 1 (79) 
- ' d x 2 2b0(b0+l) 

After introducing eqn (19) into eqn (18) we obtain 

lim £ 1 = - RAH{as TU U».». - ЯП.* In I ^ ~ ľ -L < 0 (20) 
* - i dx L 1 + DQJ 2D0 

This proves that the analyzed extreme is a maximum. Simultaneously it follows 
that the Hquidus curve of the system A—AB cannot have an inflex point at 
x= 1. 

The absolute value of the radius of curvature of the analyzed Hquidus curve 
for x -> 1 can be determined from the relationship 

4 2 Т Л - 1 

Hm r = lim (21) 
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After introducing from (20) we obtain 

2b0\AHfus-
-]2 

RTrusM In 

lim r = 
l + ô o 

^ A ^ f u s Tfus.h 
(22) 

We may multiply the expression (22) by A#fus/A#fus. After rearrangement and 
simplification we obtain 

lim r = r0 
2b0AHfus 

RT2 

•**• -1 fus, exp 

(23) 

where Tfus exp is the temperature of fusion of compound Z determined experi­
mentally. It follows that eqn (23) allows us to determine the degree of thermal 
dissociation b0 of pure compound when we know r0. 

Determination of the radius of curvature 

The radius of curvature of the liquidus curve at the melting point can be 
determined either from experimental data in numerical form or from the graph 
of the liquidus curve in phase diagram. 

For determination of r0 from numerical experimental data the liquidus curve 
can be approximated at the vicinity of point JC = 1 by parabola (Fig. 1). Axis of 
the parabola is parallel with the axis у (this is the axis of temperature) and its 
vertex has coordinates (1, Tfusexp). Equation of the parabola is (x — m)2 = 

and therefore = —2p(y — n). In our case m = 1, n = 7?us exp 

( * - ! ) 2 = -tyti- TiWexp) 

After rearrangement and substituting 1/p = с we obtain 

>> = Tkexp + <K-0.5x2 + x - 0.5) 

Because the radius of curvature at the extreme equals r = \\/y"\ it holds 

r=p= l/c 

(24) 

(25) 

(26) 

Fig. 1. Part of the phase diagram of the system 
A—В in which a congruently melting compound 
Z = AB is formed. In the vicinity of melting point 
of the compound liquidus curve is approximated 

by parabola. 
Circle is drawn with the radius r0. 

x = 0 

r-^0\ 
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The corresponding values of the parameters p or с can be determined using the 
least-squares method. When we denote the experimental points on liquidus 
curves (xi9 T) (they must lie in the vicinity of extreme) we can obtain for the 
radius of curvature the relationship 

£ ( o. 5 X /
2 _ X / + 0 .5 )2 

ro = — (27) 
I ( ^ u s , e x p - W . 5 * , 2 - * , + 0 .5 ) 

/= i 

n is the number of experimental data used in the calculation. 

Test of application of the derived relationship 

Correctness of the proposed method of calculation of the degree of thermal 
dissociation of a compound from the radius of curvature of the liquidus curve 
was numerically tested for the model system having these properties: the system 
consists of two components A and В which form congruently melting com­
pound Z = AB. The system can be divided into two simple eutectic subsystems 
A—Z and Z—В. The following values of the temperatures and enthalpies of 
fusion of components were assumed: 7? u s A =1300K, 7i u s B =1200K, 
AtffusA = 32 800 J mol"1, A # f u s B = 25 200 J mol - 1 . A # f u s Z was estimated to be 
58 800 J mol - 1 . r f u s e x p Z = 1700 К (this approximately corresponds to the rule 
that for each atom in compound the change of entropy of fusion 
A5fus = 8.5 J K"1 mol - 1). The degree of thermal dissociation of pure compound 
was chosen to be bQ = 0.5. Using these data the liquidus curve of component Z 
was calculated using the procedure described in [6]. On the basis of these data 
the radius of curvature of liquidus curve at the melting point was calculated 
according to eqns (23) and (27). The latter relationship gives the value 
b0 = 0.49925 which may be considered as proof of correctness of the presented 
approach. 

The method was tested for the case of the system NaF—Na 2 S0 4 in which a 
congruently melting compound Na 3 FS0 4 is formed. In paper [7] the degree of 
thermal dissociation of this compound was determined to be b0 = 0.73. Using 
the experimental data [8] and the relationships derived in this work we obtained 
b0 = 0.62. It follows that the accuracy of determination of the degree of thermal 
dissociation remarkably depends on the precision of measurements of the 
temperature of solid—liquid equilibrium. A more detailed analysis showed that 
the method gives satisfactory results when the temperature is determined with 
precision better than + 0.5K. 
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