Synthesis and the biological activity of 6-acetamido-2-alkylthiobenzothiazoles

*E. SIDÓOVÁ and bŽ. ODLEROVÁ

*Institute of Chemistry, Komenský University, CS-842 15 Bratislava

^bResearch Institute of Preventive Medicine, Centre for Epidemiology and Microbiology, CS-833 01 Bratislava

Received 5 June 1984

6-Acetamido-2-alkylthiobenzothiazoles were obtained by acetylation of 2-alkylthio-6-aminobenzothiazoles; their antimycobacterial activity is comparable with that of isonicotinic acid hydrazide.

Посредством ацетилирования 2-алкилтио-6-аминобензотиазолов ацетангидридом были синтезированы 6-ацетамидо-2-алкилтиобензотиазолы; их антимикобактериальная активность сравнима с активностью изоникотингидразида.

This paper is aimed to investigate the effect of acetylation of the amino group in 2-alkylthio-6-aminobenzothiazoles [1] on antimycobacterial activity. In this series only methyl [2] and allyl derivatives [3] were prepared.

According to the nature of the starting thiobenzothiazole either an equivalent amount or a 10-fold excess of acetic anhydride were used at room or at reflux temperatures. As found, the amount of acetic anhydride used did virtually not influence the yields. It was, however advantageous to employ an excess of acetic anhydride as a solvent for derivatives with a higher alkyl, since isolation of the product was easier.

6-Acetamido-2-alkylthiobenzothiazoles, like the starting 2-alkylthio-6-aminobenzothiazoles, revealed a good antimycobacterial effect against tuberculous mycobacteria (Table 1); nevertheless, 6-amino-2-benzylthiobenzothiazole, the most active derivative in this series, completely lost its activity upon acetylation to position 6. The enhanced antimycobacterial activity of derivatives with a branched alkyl at sulfur attached to position 2 is more pronounced than with the starting 2-alkylthio-6-aminobenzothiazoles and is comparable with that of known antituberculotica [4]. They reveal a considerable effect against atypical tuberculous mycobacteria. The dosis tolerata maxima (DTM) of compounds II, IV, IX, and X

Antimycobacterial activity (MIC/(µg cm³)) of 2-alkylthio-6-acetamidobenzothiazoles, isonicotinic acid hydrazide, and 2-mercaptobenzothiazole

Table 1

Commound	Mycobacterium							
Compound -	tbc. H₃7R _v	kansasii	avium	fortuitum				
I	100	200	>200	>200				
II	25 (10)	25	150	>200				
III	50	50	>200	>200				
IV	1	25	200	150				
$oldsymbol{v}$	10 (5)	25	150 (100)	200 (150)				
VI	5 (1)	25 (10)	150	>200				
VII	10 (5)	25	50	150 (100)				
VIII	5 (1)	25 (10)	100	150				
IX	5	10	25	150				
X	10	25	>200	>200				
XI	10 (5)	10 (5)	>200	200				
XII	100	50	>200	>200				
XIII	100	50	>200	>200				
XIV	>200	>200	>200	>200				
INH	1	10	100	100				
2-MBT	10	25	100	50				

MIC = minimum inhibitory concentration. The partial inhibitory concentration is given in parentheses. INH = isonicotinic acid hydrazide, 2-MBT = 2-mercaptobenzothiazole.

was found to be 500 mg/kg, whilst that of isonicotinic hydrazide (INH) was 125 mg/kg, which means that the acute toxicity of 6-acetamido-2-alkylthiobenzo-thiazoles is by four times lower than that of INH.

Experimental

The starting products were prepared according to [1]. Physical constants, analytical data, and yields of 6-acetamido-2-alkylthiobenzothiazoles are listed in Table 2. The melting points were determined on a Kofler micro hot-stage.

The antimycobacterial activity was determined in liquid Šula substrate by a dilution test [5], dimethyl sulfoxide being the solvent. The final mass concentration of compounds in the substrate was: $\varrho/(\mu g \text{ cm}^{-3})$: 0.5, 1, 5, 10, 25, 50, 100, 150, and 200. Mycobacterium tuberculosis $H_{37}R_{\nu}$ and M. avium No. 999 (Collection of the Research Institute of Preventive Medicine, Centre for Epidemiology and Microbiology, Bratislava), M. kansasii PKG 8 (Collection of Dr. Runyon, Salt Lake City), and M. fortuitum (Collection of the Institut d'hygiène et épidémiologie, Lausanne) were the microorganisms tested. The effect of products was compared with that of INH (Isoniazid, Jenapharm, GDR) and 2-mercaptobenzothiazole [6] applied under the same conditions.

Table 2
6-Acetamido-2-alkylthiobenzothiazoles

Compound	Alkyl	Formula	M,	w _i (calc.)/% w _i (found)/%				Yield/%	M.p./°C
				С	Н	N	S	-	Ref.
I	—CH₃	$C_{10}H_{10}N_2OS_2$	238.3	50.40	4.23	11.75	26.91	79.9	167.0—168.5
				50.64	4.23	11.62	27.12	92.4*	145—147 [2]
II —C ₂ H ₅	C₂H₅	$C_{11}H_{12}N_2OS_2$	252.4	52.35	4.79	11.10	25.41	93.8	130.0—131.5
				52.09	4.78	10.91	25.48	95.2*	
III	(CH ₂) ₂ CH ₃	$C_{12}H_{14}N_2OS_2$	266.4	54.11	5.30	10.52	24.07	99.4	117.5—119.0
	* Section 100 - Section 100			54.19	5.48	10.30	24.04		
IV	CH(CH ₃) ₂	$C_{12}H_{14}N_2OS_2$	266.4	54.11	5.30	10.52	24.07	94.0	125.0—126.5
	Constitution of the Consti			54.04	5.42	10.41	24.31	95.9*	
\boldsymbol{v}	-CH ₂ CH=CH ₂	$C_{12}H_{12}N_2OS_2$	264.4					97.7	124.5—125.5
								94.7	122.0—123.0 [3]
VI	-(CH ₂) ₃ CH ₃	$C_{13}H_{16}N_2OS_2$	280.4	55.58	5.75	9.99	22.87	97.6*	101.0—102.5
				55.76	5.70	9.75	22.89		
VII	-CH ₂ CH(CH ₃) ₂	$C_{13}H_{16}N_2OS_2$	280.4	55.68	5.75	9.99	22.87	51.8	93.5—95.5
				55.96	5.75	9.91	22.98		

Chem. Papers 39 (4) 553-557 (1985)

Table 2 (Continued)

Compound	Alkyl	Formula	<i>M</i> _r	w _i (calc.)/% w _i (found)/%				Yield/%	M.p./°C
			ï	С	н	N	S		Ref.
VIII	—CH(CH₃)C₂H₅	C13H16N2OS2	280.4	55.68	5.75	9.99	22.87	76.8	88—91
	CHCH			55.40	5.77	10.02	22.89		
IX	-HC CH2-CH2	$C_{14}H_{16}N_2OS_2$	292.4	57.50	5.52	9.58	21.93	99.3	115—117
	CH ₂ —CH ₂			57.33	5.52	9.36	21.93		
X	(CH ₂) ₅ CH ₃	C ₁₅ H ₂₀ N ₂ OS ₂	308.5	58.41	6.54	9.08	20.79	97.4	102.0—103.5
	,			58.11	6.63	8.86	20.92		
XI	—(CH ₂) ₆ CH ₃	$C_{16}H_{22}N_2OS_2$	322.5	59.59	6.88	8.69	19.89	91.5	91—93
	(2)02			59.34	6.88	8.52	19.96		
XII	—(CH ₂) ₇ CH ₃	$C_{17}H_{24}N_2OS_2$	336.5	60.68	7.19	8.32	19.06	98.1	100.0—101.5
	()/3	-1,2		60.91	7.20	8.19	19.06		
XIII	—(CH ₂) ₈ CH ₃	$C_{18}H_{26}N_2OS_2$	350.5	61.67	7.48	7.99	18.29	94.3	90.5—92.0
	(0112)80113	2162-252 12 0 0 2	220.0	61.62	7.56	7.83	18.36	51 2151	
XIV	-CH ₂ -C ₆ H ₅	C16H14N2OS2	314.4	61.12	4.49	8.91	20.39	98.0	171.5—172.5
AIV		C161114112O32	314.4	61.03	4.47	8.62	20.49	,	1.1.5 172.5

Yields marked by an asterisk are given for the 1:1 mole ratio of acetic anhydride to 2-alkylthio-6-aminobenzothiazole; the nonmarked refer to a 10:1 ratio.

Dosis tolerata maxima was estimated with white mice according to [7]. A 95 % mortality of mice after administration of the compound by an oesophageal probe was contrasted with a group to which only solvent without any substance and a group to which INH were administered.

6-Acetylamino-2-alkylthiobenzothiazoles I—XIV

2-Alkylthio-6-aminobenzothiazole (3 mmol) dissolved in an equivalent amount or in an excess of acetic anhydride was left to stand at room temperature for 10 min to 24 h (the mixture was heated to boiling temperature when preparing compounds XI and XIII). The mixture turned clear and in some experiments the product immediately separated. A 5-fold volume of water heated to 60 °C was added either after separation of the product, or after 24 h, the mixture was cooled to 5 °C, after 30 min the crystals were filtered off and recrystallized from ethanol—water in the volume ratio = 1:1 to 4:1, charcoal being added.

Acknowledgements. The authors are grateful to Ing. E. Greiplová and her coworkers (Institute of Chemistry, Komenský University, Bratislava) for elemental analyses of products synthesized.

References

- 1. Sidóová, E., Odlerová, Ž., Volná, F., and Blöckinger, G., Chem. Zvesti 33, 830 (1979).
- Kiprianov, A. I. and Khrapal, G. V., Uch. Zap. Khark. Univ., No. 19, 305 (1940); Chem. Abstr. 38, 969 (1944).
- 3. Takahashi, T. and Okada, J., J. Pharm. Soc. Jap. 71, 898 (1951); Chem. Abstr. 46, 8091 (1952).
- 4. Sidóová, E. and Odlerová, Ž., Czechoslov. 216450 (1982).
- Odlerová, Ž., Medvecký, R., and Hammelová, E., Stud. Pneumol. Phthiseol. Czechoslov. 36, 507 (1976).
- 6. Blöckinger, G. and Sutoris, V., Czechoslov. 143604 (1971).
- 7. Wagner, W. H., Advan. Tubercul. Res., Vol 9, p. 104. Karger, Basel, 1958.

Translated by Z. Votický