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On the basis of group-theoretical approach we elaborated the complete
classification of possible symmetries of extremal points of potential energy
surfaces of Jahn—Teller systems for all symmetry point groups. The method
originates from the principle of step-by-step splitting of degenerate irreducible
representations of corresponding electron terms due to the lowering of the
symmetry of the system. It was shown that the existence of some deformations
cannot be the result of the Jahn—Teller effect contrary to the fact that also
such an explanation is at present used.

Ha ocHoBe rpynnoBo-T€OpeTHYECKOTO MOAXOAa MbI pa3paboTany NOIHYIO
KJIacCH(PUKALHUIO BO3MOXHBIX CHMMETPHH 3KCTPEMANIbHBIX TOYEK MOBEPXHOC-
TeH NOoTeHUHaIbHON 3Hepruu cucreM SIHa—Tennepa aig Bcex TOYEYHbIX Fpyni
CUMMETPHH. DTOT METOJ] MPOUCTEKAET U3 MPUHLIKIA TOCTafUHHOTO pacllenie-
HHSL BBIPOXIEHHBIX HEPUBOXUMBIX MPEACTABICHHA COOTBETCTBYIOLIMX JJIEK-
TPOHHBIX TEPMOB BCJIECTBHE MOHHXXEHUS CHMMETPHH cHcTeMbl. Bblo noka3sa-
HO, 4YTO CYLIECTBOBAaHHE HEKOTOPBIX HCKaK€HHH HE MOXET SBIATbCA ClIeH-
cTBueM 3 dekra SAna—Tennepa, Bonpeku ToMy, YTO MORo6HOe 0O BACHEHHE
TaKXe MCMOJb3yeTCs B HacTosillee BPEMS.

The problem of symmetry of systems which originate through Jahn—Teller
deformation from the original highly symmetrical system, was mostly solved by
analytical methods of searching for extrema of adiabatic potential surface [1—15].
Such an attempt to solve this problem has two major disadvantages:

i) Analytical forms of adiabatic potential surfaces are determined by perturba-
tion theory, using the Taylor expansion of vibronic Hamiltonian. The number of
extrema from such adiabatic potential surfaces is then dependent on the order of
perturbation theory used as well as on the number of terms in the Taylor expansion
of vibronic Hamiltonian.
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ii) The problem of obtaining the extremal points from adiabatic potential of
more complex forms is transformed to the problem of solving the system of
nonlinear equations. We note that there does not exist any algorithm which
guaranties obtaining all the extremal points.

Some authors [16—19] used the group-theoretical approach to solve this
problem using the symmetry of the Jahn—Teller active coordinates. Even this
approach did not give the complete solution of the problem, because the obtained
results satisfy only the first order of perturbation theory.

In our work we present the complete group-theoretical analysis of symmetries of
the Jahn—Teller systems of all molecular symmetry point groups.

Method and results

The Jahn—Teller effect may appear only in the nonlinear systems with such a symmetry
group which possesses at least one multi-dimensional irreducible representation. Mostly this
is two-dimensional degenerate E-representation and/or three-times degenerate T-repre-
sentation. In the case of symmetry groups I, and I yet four-times degenerate G-representa-
tion and five-times degenerate H-representation appear. Such a multi-dimensional repre-
sentation splits due to the Jahn—Teller effect into the representation of lower order (until
the nondegenerate representation is achieved) lowering the symmetry of the system.
Therefore the probiem to determine the extremal points of the Jahn—Teller systems is thus
reduced to find all the symmetry point groups which satisfy the following conditions:

i) They are the subgroups of original symmetry group of the system in which the
Jahn—Teller effect appears.

ii) By splitting the degenerate irreducible representations there appears at least one
nondegenerate irreducible representation.

iii) The subgroups are not permitted if there exists the transition group (such that it
causes the step-by-step lowering of symmetry of original group to the final subgroup) while
the degeneracy is removed already in the transition group.

For our purposes still further division of such subgroups into some levels will be useful. In
the first level there are groups which are the subgroups of the former original symmetry
group of studied system and are not the subgroups of any other subgroups. In the second
level there will be groups which are the subgroups of the original group as well as of the
groups from the first level. In the third level there will be groups which are the subgroups of
the original group as well as of the groups from the first and the second level, etc. The order
of the original symmetry group is the integer multiple of the orders of its subgroups [20, 21].
This gives us the number of equivalent geometries of extremal points of adiabatic potential
surface, which correspond to the system with the symmetry of the given subgroup.

The hierarchy of molecular symmetry point groups as well as their subgroups is presented
in Fig. 1. The common dihedral and cyclic groups have been arranged in the figure in
descending sequence from groups of the highest to the lowest order. This enables all the
subgroups of a particular point group to be noted at a glance. The quotient of the order of
given group and its subgroups must be a small integer greater than unity. The icosahedral
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Fig. 1. Hierarchy of molecular symmetry point groups.
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and cubic groups have been arranged in a similar figure and the descent in symmetry
continued until correspondence with the other part of figure was achieved.

The results of group-theoretical analysis of all the symmetry point groups (containing the
degenerate irreducible representations) of molecules are presented in Table 1. Subgroups
fulfilling the three mentioned conditions are ordered into individual levels. For each
subgroup we also present the irreducible representations to which the stable electron term
can be ascribed.

Table 1

Possible symmetries of the extremal points of Jahn—Teller systems®

Number of
Electron Order of  equivalent g
Group Order Level  Subgroup electron
term subgroup extremal
: term
points
O 48 E, 1 Dan 16 3 A, By,
D. 8 6 Ay, B,
D2 8 6 Ag
D2y 8 6 A, By
Can 4 12 Ag, B
3 D, 4 12 A
C. 2 24 A,B
G 2 24 A,
C. 2 24 A, A"
E. 1 Dan 16 3 A, B
D. 8 6 A, B,
Dzh 8 6 Au
Da4 8 6 A, B:
Can 4 12 A., B,
3 D. 4 12 A
C 2 24 A,B
G 2 24 A,
(@ 2 24 A, A"
T, 1 Dan 16 3 Az
Ds4 12 4 Az
2 D, 8 6 A
D; 6 8 A
D2d 8 6 AZ
D:s 8 6 Big, B2g, B
Se 6 8 A
G, 6 8 Az
Can 4 12 Ag, B,
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Table 1 (Continued)

Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
N term
points
3 D 4 12 Bi, Bz, Bs
GCs 3 16 A
C,, 4 12 B, B2
Can 4 12 B,
C; 2 24 A,B
G 2 24 A,
C. 2 24 ALA"
4 C: 2 24 B
Tz 1 Dan 16 3 Bz,
Dsa 12 4 Ay
2 D, 8 6 B:
Ds 6 8 A
D24 8 6 B:
D2 8 6 Big, Bz, Bsg
Se 6 8 A,
Cs, 6 8 Ay
Can 4 12 A,, Bg
3 D, 4 12 B, Bz, Bs
Cs 3 16 A
Cz, 4 12 B, B2
Can 4 12 B,
C: 2 24 A,B
(o] 2 24 A,
C 2 24 A'LA
4 C; 2 24 B
Thu 1 Dan 16 3 Az,
Dsa 12 4 Az
2 D, 8 6 A
Ds 6 8 A:
Daa 8 6 B:
Da2n 8 6 B, B2, Bsu
Se 6 8 A
Cs, 6 8 Ay
Can 4 12 A,, B,
3 D. 4 12 Bi, B2, Bs
GCs 3 16 A
Ca, 4 12 B,, B:
Can 4 12 B.
C 2 24 A,B
(o] 2 24 A,
C. 2 24 A',A"
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Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
; term
points
4 C; 2 24 B
T2 1 Dan 16 3 B:.
Ds. 12 4 A
2 D, 8 6 B:
D, 6 8 Al
D2, 8 6 B:
D2 8 6 Biu, B2y, Bau
Se 6 8 A,
Cs. 6 8 A;
Ca 4 12 A, B.
3 D- 4 12 B, B, Bs
Cs 3 16 A
Ca. 4 12 B, B;
Can 4 12 B.
C: 2 24 A, B
(& 2 24 A,
C. 2 24 A, A"
4 C: 2 24 B
I, 120 T, 1 Dsa 20 6 Az
D34 12 10 Az
2 Ds 10 12 A:
Ds 6 20 A;
D2 8 15 Big, Bz, B3,
Se 6 20 A,
Can 4 30 A, B,
3 D- 4 30 B, B2, Bs
Cs 3 40 A
C; 2 60 A, B
G 2 60 A,
C. 2 60 A',A"
T 1 Dsq 20 6 Az
D3y 12 10 Az
2 Ds 10 12 A:
D; 6 20 Az
D2h 8 15 Blu, BZuy BSu
Se 6 20 A,
Can 4 30 A, B.
3 D: 3 40 A
G 2 60 A,B
G 2 60 A,
C 2 60 A, A"
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Table 1 (Continued)

Number of

Electron Order of  ecquivalent Stithle
Group Order Level  Subgroup clectron
term subgroup cxtremal
. term
points
G, 1 Ta 24 5 A,
Dau 12 10 A Az
2 T 12 10 A
D» 6 20 Al A
D2, 8 15 Bi,. B2 B,
Se 6 20 A,
Ca 4 30 A B
3 D: 4 30 B, B:, B,
Cs 3 40 A
C, 2 60 A.B
G 2 60 A,
C, 2 60 A’ A
G. 1 Ta 24 5 A.
Dy 12 10 A, Az
2 T 12 10 A
D» 6 20 AL A;
D34 8 15 Bi.. By, Bi,
Se 6 20 A,
Can 4 30 A, B,
D. 4 30 B\, B3, Bx
G 3 40 A
C; 2 60 A,B
G 2 60 A,
G 2 60 AL A"
H, 1 Ds4 20 6 A
D:d 12 10 A g
2 Ds 10 12 A
Ds 6 20 A,
D:2n 8 15 A;, Big, Bz, B,
Se 6 20 A
Can 4 30 A, B,
3 D, 4 30 A, By, B2, B
G 3 40 A
C; 2 60 A,B
G 2 60 A,
G 2 60 A',AY
H. 1 Dsa 20 6 A
Dsq 12 10 A
2 Ds 10 12 A,
Ds 6 20 Al
D2 8 15 A., Bi, Bz, Bsy
-Se 6 20 A,
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Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
. term
points
Czn 4 30 A, B.
3 D: 4 30 A, B,, B2, Bs
G 3 40 A
C; 2 60 A,B
G 2 60 A
G 2 60 A, A"
T 24 E 1 D2 8 3 A, By
2 D, 4 6 A
C 2 12 A, A"
T, 1 Da. 8 3 A
Cs. 6 4 A
2 D: 4 6 B, Bz, B
G 3 8 A
Can 4 6 B, B:
C; 2 12 B
C, 2 12 A', A
T. 1 D24 8 3 B:
G, 6 4 A,
2 D: 4 6 Bi, B;, B
GCs 3 8 A
Can 4 6 By, B;
C; 2 12 B
G 2 12 A, A"
T 24 E; 1 D2s 8 3 A,
2 D, 4 6 A
G 2 12 Ag
E. 1 D3 8 3 A,
2 D, 4 6 A
(@] 2 12 A
T, 1 D2 8 3 Big, Bz, Bs,
Se 6 4 Ag
2 D, 3 8 B, Bz, B;
G 3 8 A
G 2 12 Ag
T. 1 D2 8 3 By, Bay, Bs
Ss 6 4 A,
2 D. 4 6 B, B, Bs
Cs 3 8 A
G 2 12 A,
(0] 24 E 1 D, 8 3 Ay, B
2 D: 4 6 A
C; 2 12 A,B
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Table 1 (Continued)

Number of

- Stable
Group Order Rlextam Level  Subgroup Rudsral  ieqaimlent electron
term subgroup cxtremal
’ points term
T, 1 D, 8 3 A
Ds 6 4 A:
2 D- 4 6 B, B2, Bs
Cs 3 8 A
C, 2 12 A.B
T. 1 D. 8 3 B;
Ds 6 4 A,
2 D. 4 6 B,, B2, Ba
Cs 3 8 A
C; 2 12 A, B
I 60 T, 1 Ds 10 6 A
Ds 6 10 A2
2 D, 4 15 B, B3, B
Cs 3 20 A
C; 2 30 A, B
T 1 Ds 10 6 A
Ds 6 10 A
2 D 4 15 B, B:, B
G 3 20 A
C; 2 30 A, B
G 1 T 12 5 A
D; 6 10 A, A
2 D. 4 15 B, B, B;
(6} 3 20 A
G, 2 30 A, B
H 1 Ds 10 6 A,
Ds 6 10 A,
2 D; 4 15 A, By, B2, Bs
Cs 3 20 A
C; 2 30 A, B
T 12 E 1 D: 4 3 A
T 1 D: 4 3 B., B», B;
Cs 3 4 A
Den 24 E 1 D2 8 3 Bz, B3,
2 D. 4 6 B2, Bs
C. 4 6 Az, By, B:
Can 4 6 A, B,
3 C; 2 12 A,B
(&} 2 12 A,
G 2 12 A, A"
Ez 1 D2 8 3 Ag, By,
2 D: 4 6 A, B,
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Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
J term
points
C. 4 6 Ay, Az, B,
Can 4 6 A, Bg
3 C; 2 12 A,B
G 2 12 A,
G 2 12 AL A"
E. 1 D2 8 3 B, Bsu
2 D, 4 6 A, B,
C,. 4 6 A, By, B:
Can 4 6 A., B,
3 C, 2 12 A,B
(o] 2 12 A,
G 2 12 A, A"
Ea. 1 D2n 8 3 A, B
2 D: 4 6 A, B,
Cz. 4 6 Ay, Az, By
Can 4 6 A, B.
3 C; 2 12 A, B
G 2 12 A,
(0 2 12 A, A"
Dsa 24 E, 2 D, 4 6 B:, Bs
Cz., 4 6 Bl, BZ
3 C; 2 12 A, B
G 2 12 A, A"
E. 1 D24 8 3 B, B2
2 D: 4 6 A, B,
Ca. 4 6 Ay A
3 C; 2 12 A,B
C. 2 12 A, A"
Es 1 Ds 12 2 B, B2
Cs. 12 2 Bi, B:
2 D: 4 6 B2, Bs
Ca, 4 6 Bi, B2
3 C; 2 12 B
E, 1 D24 8 3 A, A
2 D, 4 6 A, B:
Ca, 4 6 A, B:
3 C; 2 12 A,B
G 2 12 A, A"
Es 2 D: 4 6 B, B,
Ca, 4 6 B, B
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Table 1 (Continued)

Number of

Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
. term
points
3 C, 2 12 A,B
G 2 12 A A"
Ds 12 E, 1 D- 4 3 B2, Bs
2 C; 2 6 A,B
E. 1 D, 4 3 A, B,
2 C, 2 6 A,B
Dsn 20 Ei 1 Cay 4 5 Ay, B,
2 C; 2 10 A,B
C. 2 10 A, A"
E; 1 (e 4 5 A, By
2 C; 2 10 A,B
G, 2 10 AL A"
EY 1 G, 4 5 Az, B
2 C; 2 10 A,B
C 2 10 A, A"
E: 1 Ca, 4 5 A, B:
C; 2 10 A,B
C 2 10 A, A"
Dsa 20 Eig 1 Can 4 5 Ag, B
C; 2 10 A,B
G 2 10 A,
G 2 10 A, A
Ez, 1 Can 4 5 Aq, B,
C: 2 10 A,B
G 2 10 A,
C 2 10 A', A"
E. 1 Can 4 5 A., B,
C, 2 10 A,B
G 2 10 A
C. 2 10 A, A
Ea. 1 Can 4 5 A, B,
C. 2 10 A,B
(o] 2 10 A,
C, 2 10 A',AY
Ds 10 E, 1 C; 2 5 A, B
E; 1 C; 2 5 A,B
Dan 16 E; 1 D, 8 2 Bsg, B3,
2 D. 4 4 Bz, Bs
Ca, 4 4 Bi, B
Can 4 4 Bg
3 C. 2 8 B
E. 1 Da2s 8 2 Bz., Bsu
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Table 1 (Continued)

Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
. term
points
2 D. 4 4 B:, B;
Cz, 4 4 B, B:
Czn 4 4 B.
3 C; 2 8 B
Daa 16 E, 2 D. 4 4 B2, Bs
Ca, 4 4 By, B:
C; 2 8 B
E, 1 D, 8 2 B, B:
Ciy 8 2 B,, B:
2 Cs 4 4 B
Es 2 D: 4 4 B:, B
Czy 4 4 By, B
3 C 2 8 B
D, 8 E 1 D, 4 2 B2, B
2 C; 2 4 B
D3 12 E’ 1 (& 4 3 A, B:
2 C; 2 6 A,B
C 2/ 6 A'LA"
E" 1 Cz, 4 3 Az, B:
2 C; 2 6 A,B
C, 2 6 A,A"
D3 12 E, 1 Can 4 3 A, B;
C; 2 6 A,B
G 2 6 Ag
C. 2 6 A',A
E. 1 Can 4 3 A, B.
C; 2 6 A,B
G 2 6 A
G 2 6 A, A"
Ds 6 E 1 C, 2 3 A,B
D24 8 E 1 D: 4 2 B:, Bs
(o 4 2 B, B:
2 C; 2 4 B
S0 10 E;,g 1 (@) 2 5 A,
Ez 1 G 2 5 Ag
Ei, 1 G 2 5 A,
Ea 1 G 2 5 A,
Ss 8 E, 2 C; 2 4 B
E. 1 Cs 4 2 B
Es 2 C; 2 4 B
Ss 6 E, 1 G 2 3 A
E. 1 G 2 3 A,
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« Table 1 (Continued)

Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup electron
term subgroup extremal
; term
points
Ss 4 E 1 C; 2 2 B
Cs 8 E: 2 C 2 4 B
E, 1 Cs 4 2 B
Es 2 G 2 4 B
Coen 12 E;, 1 Can 4 3 B,
2 C 2 6 B
G 2 6 Ag
C. 2 6 A"
E2 1 Can 4 3 Ag
2 C, 2 6 A
G 2 6 A,
C 2 6 A’
Ei. 1 Can 4 3 B.
C; 2 6 B
(0] 2 6 A,
C. 2 6 A’
E,, 1 Can 4 3 A
C; 2 6 A
e} 2 6 Aq
C 2 6 A"
Cen 12 E, 1 Ca, 4 3 B, B;
2 C; 2 6 B
G 2 6 A’ A
E, 1 Cz, 4 3 A A
2 C. 2 6 A
C 2 6 AAY
Cs 6 E, 1 C; 2 3 B
E; 1 C, 2 3 A
Csn 10 H 1 G 2 5 A’
E; 1 C 2 5 A’
EY 1 (o 2 5 A"
E3 1 C 2 5 A"
Cs. 10 E, 1 (08 2 5 A, A"
E. 1 G 2 5 A, A"
Cian 8 E; 1 Can 4 2 B,
2 C; 2 4 B
E. 1 Can 4 2 By
2 C; 2 4 B
Ca, 8 E 1 Ca, 4 2 By, B:
2 C; 2 4 B
Ca 4 E 1 C: 2 2 B
Csn 6 E' 1 C 2 3 A’
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Table 1 (Continued)

Number of
Electron Order of  equivalent Stable
Group Order Level  Subgroup q electron
term subgroup extremal
. term
points
E” 1 C. 2 3 A"
Cs. 6 E 1 C 2 3 A, A"

a) Notation for irreducible representations:

1. A: 1-Dimensional representation which is symmetric with respect to rotation about the
principal axis;

: 1-dimensional representation which is antisymmetric with respect to rotation about the

principal axis;

: 2-dimensional representation;

: 3-dimensional representation;

: 4-dimensional representation;

: 5-dimensional representation.

2. Subscript 1, 2:

For A and B representations only-symmetric (1) or antisymmetric (2) with respect to C; axis
perpendicular to the principal axis, or, in the absence of this, with respect to a vertical
symmetry plane.

3. If there exist higher subscripts (3, 4 or 5), these indicate the different symmetry with respect to
specific symmetry operation, which depends on the given symmetry group (for example in the
groups Ded, Dass, Dzs, Ss).

4. Primes and double primes (' and "):

Where appropriate, these indicate symmetry (') or antisymmetry (") with respect to
a horizontal mirror plane.

5. g and u subscripts:

Where appropriate, these denote symmetry (g — gerade) or antisymmetry (u — ungerade)
with respect to an inversion centre.

If these rules allow several different labels, g and u take precedence over 1 and 2, which take

precedence over and”

o]

TQSm

Discussion

We start our discussion by presenting the scheme for the octahedral symmetry
group (Ox). Its order is equal to 48 and contains 6 multi-dimensional irreducible
representations (E,, E., Tig, T2, T1u, and T.). It contains all together 24 subgroups
(O, Td, Th, D4h, DSd, DA, DS, DZ’ DZh, Dzd, SG’ S4, T, CBv, C2h, C4u, Clh, CZu, C4’
C,, C;, G, C,, and C,). The following subgroups fulfil the three above-mentioned
conditions: Day, Ds4, D4, D3, D2, D3y, D24, Ss, Cs, Ca, Can, Cay, Ci, and C,. In the
case of three-times degenerate T, electron term this is in the first level split to B,
and E, terms in the subgroup D.; or to terms A,, and E, in the subgroup Ds4. The
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other three direct subgroups (O, T, and T,) do not cause splitting of T, electron
term. In the second level the degenerate representations of the first level split to the
following nondegenerate irreducible representations: B;(D.), Ai(Ds), Bi(D:a),
Big, B, and Big(D21), Ay(Ss), Ai(Cs,), A, and B,(C3). In the third level the
degenerate irreducible representations of the second level split to the following
nondegenerate irreducible representations: Bi, B,, and Bs(D,), A(C;), B; and
B:(C2.), Be(Car), A and B(C), A(C), A’ and A"(C;). In the fourth level we
have only one nondegenerate irreducible representation B(C,).

If we limit ourselves to the so-called Jahn—Teller active vibrations which give
already the nonzero contribution to vibronic interaction in the first order of
perturbation theory, it is sufficient to take into account only the centro-symmetric
vibrations. In this case we can limit ourselves only to the subgroups which possess
the inversion symmetry operation. Such are only the subgroups Dus, D34, Ss, D2s,
Czn, and C.. Through this limitation we get in the first level the irreducible
representations Byy(Das) and Ai,(Ds4). In the second level we get By, Ba,, and
B3g(D24), Ay and By(Csr), and A,(Ss) irreducible representations. In the third level
we have only B,(C..) and A,(C) irreducible representations. For octahedral
system in three-times degenerate T, electron term using this limitation we get:

i) three equivalent geometries of D4, symmetry
ii) four equivalent geometris of Ds;, symmetry
iii) six equivalent geometries of D,, symmetry
iv) eight equivalent geometries of S¢ symmetry 2nd level
v) twelve equivalent geometries of C;, symmetry

vi) twelve equivalent geometries of C,, symmetry

vii) twenty-four equivalent geometries of C; symmetry

It is necessary to note that conclusions based on assuming only the centro-sym-
metric subgroups are valid only in the first order of perturbation theory. Therefore
in some approaches [1—19] this limitation occurs.

The classification of molecular symmetry point groups according to given rules
(presented in Table 1) determines all the possible symmetries of systems which
undergo the Jahn—Teller deformation. The presented table therefore represents
the complete classification of possible symmetries of Jahn—Teller systems for all
symmetry point groups of molecules. Thus the existence of deformations of
formerly symmetric system into the system of different symmetry cannot be due to
the Jahn—Teller effect. On the basis of group theory we can reject also some
commonly used explanations of the transition between some geometries as the
consequence of Jahn—Teller effect. Therefore for example the transition tetrahed-
ron (symmetry T,)<>square planar (symmetry D.;) cannot be due to the
Jahn—Teller effect, because the group D., (order 16) is not subgroup of T, group
(order 24). Besides, in some recent papers [19] this transition is explained as due to
the Jahn—Teller effect. Similarly the transition of five-coordinated complexes

1st level

3rd level
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between trigonal bipyramid (symmetry Ds,) and square pyramid (symmetry Cs, ) is
not due to Jahn—Teller deformation because group C,, (order 8) is not subgroup
of Ds, group (order 12).

On the other hand, we must have in mind also the limitation of group-theoretical
approach to the solution of problems of symmetries of Jahn—Teller systems. Such
an approach on one side gives the geometries of all possible extremal points of
adiabatic potential for given system but on the other side it says nothing whether
these extremal points will be realized or not.
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