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Thermodynamics of phase equilibria in the binary condensed systems which
form with respect to “solidus—liquidus” equilibrium continuous solid solutions
and which have in the subsolidus region polymorphic modifications of compo-

“nents is discussed. The polymorphic modifications can form either no solid
solutions, either limiting or continuous solid solutions.

Rules describing the course of curves of monovariant phase equilibrium in
the vicinity of eutectoid points were derived assuming classical ideal behaviour
of all solid solutions taking part in the equilibrium. Also the rules which should
be obeyed by the slopes of tangents to the curves of monovariant phase
equilibrium of continuous solid solutions in subsolidus region are presented.

Brum n3ydeHs! fBOMHbIE KOHAEHCHPOBAHHbIE CHCTEMBI, B KOTOPBIX CYIIEC-
TBYIOT C TOYKH 3peHUs] PaBHOBECHS «COJMIYC—IIMKBHIYC» HeOrpaHWYeHHbIE
TBep/ble pacTBOpPHI H B 06J1aCTH NOJ cOMMycoM oGpa3yloTcss HoTMMOpgHBIe
MopHdUKauK KOMIOHEHTOB, B3aHMHO NOJIHOCTBIO, OTPaHAYEHHO WIH Heorpa-
HHYEHHO PacTBOPHMBIE.

Iomydens! 3aKOHOMEPHOCTH XOfa KPHBBIX MOHOBapHaHTHOTO (pa30BOro
PaBHOBECHS B OKPECTHOCTH 3BTEKTOMAHBIX TOYEK IPH YCJIOBHH KJIacCCHIECKH
HA€abHOTO NMOBENEHHA BCEX TBEPABIX PaCTBOPOB, yJaCTBYIOIMX B YKa3aHHOM
PaBHOBECHH, a TakKKe 3aKOHOMEPHOCTH ISl HAaKJIOHa KacaTeJbHbIX KPHBBIX -
MOHOBapHaHTHOIO (pa30BOr0 paBHOBECHS /I HEOTPaHMYEHHBIX TBEPABIX pac-
TBOPOB B 00JIaCTH NOJ COMEYCOM.

For the systems of this type it is not important if the course of liquidus and
solidus curves is a monotonous one or if there is maximum or minimum on the
curves.

* For Parts I—I1I see Chem. Zvesti 36, 453, 473, 577 (1982).
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1. One component exists in two polymorphic modifications

In the simplest case only low temperature modification of one of the two
components, e.g. of component B (Fig. 1) is formed in the subsolidus region. Along
the curve (T7, F) the following equilibrium takes place

(A"+B}) = B?* (1)

In this equilibrium two phases coexist, viz. the continuous solid solution and pure
component B in the form of low temperature modification. Thus according to
Gibbs phase rule F=C—Ph+1=2-2+1=1 and, therefore, the temperature of
polymorphic transition T9(B:/B.) is not constant. The equation of monovariant
curve (T7, F) has the form

In a'(B))=

AH(B./B,) [ 1 1] )

R T*(B/B;) T

It follows that it is formally identical with the LeChatelier—Shreder equation. By
a cryometric treatment of the curve (7%, F) one can determine the numerical value
of the quantity AH"(B:/B.).

When we cool a system we often observe that not the pure component B? * but
a limiting solid solution formed on the basis of this component is separated (Fig. 2).
In this case it holds for the phase equilibrium

(A*+B}) = B 3)

T'(B,) '8,

t
Al T(A)

T"(8,/8B,) 7"8,/8,)

B¢

Fig. 1. Phase diagram of the condensed system Fig. 2. Phase diagram of the condensed system

A—B,(B,) with continuous liquid and solid A—B,(B:) with continuous liquid and solid
solutions. Pure low temperature polymorphic solutions. Limiting solid solution formed on the
modification BZ* of component B is in equilib- basis of low temperature polymorphic modifica-
rium with solid solution (A* + B}). tion B3 of component B is in equilibrium with

solid solution (A* + B}).
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THERMODYNAMICS OF PHASE EQUILIBRIA. IV

2. Both components of the system can exist in
polymorphic modifications

a) Only pure solid components exist in the subsolidus region

Let us assume that in subsolidus region polymorphic modifications of both
components can be formed and that transition temperature T decrease in both
cases. If the low temperature modifications of components are completely immis-
cible we get a phase diagram illustrated in Fig. 3. Along the curve [T"(A1/A>), €]
the following phase equilibrium exists

(Ai+Bi) = A?*
and along the curve [T(B1/B>), €] it holds
(Ai+B}) = B
Nonvariant equilibrium is then established in the eutectoid point. It holds
(Aj+B}) = AY'+BJ" (4)

Therefore when we take heat from the system pure low temperature modification
of the component AZ'* is formed along the curve [ T%(A1/Az), €] while along the
curve [ T"(B.1/B,), €] it is the pure low temperature modification of component B3 *.
At the eutectoid point € the continuous solid solution splits into pure substances
A%* and B2

Each curve [ T"(A1/Az), €], [T"(B1/Bz), €] can be described by an equation of the
type (2). For the slopes of tangents to these curves of monovariant equilibrium we
can apply at the point € the rule which is similar to CTC TI [1—3]. This rule can be
derived easily for the case when the solid solution (A} + B}) behaves ideally or if it
is not far from ideality. Differential form of the equation of the curve of
monovariant equilibrium [T%(A1/Az), €] is

din x-(A1)=A—H:g%1-dT (5

which can be also written as

dx'(Al) _ AH"(A}/A:)
x(A;)) RT?

.dT (6)

Multiplying eqn (6) by

x. A] . 2
dx'(A,) RT
yields
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Fig. 3. Phase diagram of the condensed system

Ai(A;)—B,(B:) with continuous liquid and

solid solutions. Low temperature polymorphic

modifications of both components are com-

pletely immiscible. There is one simple eutec-

toid point in the subsolidus region of the phase
diagram.

RT*=x'(A:) - AH*(A//A,) -

which can be written as

RT?=x'(A:) - AH"(A/A,) - K'(A))
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r'lay) . Fig; /By
a,/A,) (R+B))

M

Fig. 4. Phase diagram of the condensed system
Ai(A;)—B,(B;) with continuous liquid and
solid solutions. The low temperature pure
polymorphic modification A2* of component
A is in equilibrium with limiting solid solution
formed on the basis of low temperature
polymorphic modification of component B.
There is one eutectoid point in the subsolidus
region.

dT
dx‘(Al)

(7

k*(A,) is the slope of tangent to the curve [T"(A:/A:),€]. Similarly for the

component B we obtain

RT?=x'(B,) - AH"(B./B,) - k*(B.)

(8)

Both curves of monovariant equilibrium intersect at temperature T'(€). In this case
the product RT? can be eliminated from eqns (7) and (8) which results in

x'(A1) - AH"(A//Az) - kK*(A1)=x'(B:) - AH"(B1/B5) - k*(B,)

where

9)

X'(Al) + x'(Bl) =1
Eqn (9) is a modified form of the CTC II.

b) In the subsolidus region limiting solid solutions are formed

Another case occurs when instead of pure component a limiting solid solution

formed either on one side (Fig. 4) or on both sides (Fig. 5) coexists with the
continuous solid solution (A}+Bj})). Then for the component A of the phase
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THERMODYNAMICS OF PHASE EQUILIBRIA. IV

diagram given in Fig. 4 the relations (5— 7) are valid. For the component B (F_ig. 4)
it holds (assuming that the continuous solid solution (A}+B3) as well as the
limiting solid solution B3 are ideal)

x'(B)) _ AH*(B./B,)

dln (B2~ RT° -dT (10)
which can be rewritten as
dIn x*(B;)—d In x'(B,) = —R(—l;;&z (11)
dx*(B.) _dx'(Bs) _ AH“(B,/B,,)
X (B]) X (Bz) RT2 -aT (12)

It should be emphasized that dx*(B;)#dx‘(B:) despite of the fact that both
expressions are infinitesimal quantities. In this case it is easy to prove that
dx*(B.)>dx'(B,).

X (Bz) dx*® (Bl) X (Bl) -dx® (Bz) AH"(BJBZ)

*(B1) - x'(B2) rre 4T (13)
We multiply eqn (13) by x*(B:) - x*(Bz) - RT?/d T which gives
T [x'(B,) . J_ld";?‘ —x(By)- _Zd";(;;"z ] -
=x’(B1) . x'(Bz) . AH“(Bl/Bz) (14)

The expressions d7/dx*(B,) and dT/dx*(B) correspond to the slopes of tangents
to the curves [T%(B:/B:), €] and [T7(Bi1/B.), N], respectively. We shall denote
them as k*(B:) and k°(B:). Then it holds

RTZ[X'(Bz)/k!(Bl) — x’(B;)/ kS(Bz)] = x'(B1) . x’(Bz) . AH"(Bl/Bz)

or

2, X'(B) - K'(By) — x*(By) - k°(By) _
BT K(B,) - K'(B,)

x*(B,) - x*(B,) - AH*(B./B,)

Then it follows

x'(Bl) . k'(Bl) . x’(Bz) . kl(Bz)

RT" = (8,) K (B,) —~'(B)) (B

- AH"(B,/B;) (15)

At temperature T= T(e) the left and right side of eqns (7) and (15) are equal
and thus it holds
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x'(Ax) . k‘(A:) . AH"(A:/Az) =

- x'(Bl) . k'(Bx) . x'(Bz) . k'(Bz)
x'(B2) - k*(Bz2) — x°(B,) - k*(By)

The relationship (16) describes the rule which must be obeyed by the slopes of
tangents to the curves of monovariant equilibrium at the eutectoid point € if
one-side solid solution is formed in subsolidus region (Fig. 4). When solid solutions
are formed on both sides of the system then it holds for the slopes of tangents to
curves at the point € that

X'(A1) - k(A1) - X(Aa) - K*(A2)
X'(A2) - K'(Az) — x*(Ay) - K'(Ar)

_ x'(B1) - k'(By) - x*(B>) - k'(B2)
"~ x'(B) - k'(B2) — x*(By) - k*(B1)

As we have shown above the relationships (16) and (17) are valid in that case
when all solid solutions coexisting in equilibrium at temperature T(g) are ideal.

Eqns (9), (16), and (17) are special cases of the CTC II, which was modified for
subsolidus equilibria.

General solution of the CTC 1II for “solidus—liquidus” equilibrium has been
derived in a different way by Hagége [4]. Practical value of the relationships (16)
and (17) consists in that they allow to calculate one from the quantities AH"(A;-
/Az) or AH"(B,/B;) providing the other data are known. The relationships can be
used also for verification of consistency of experimental data.

r'is,) r'®s,)
/ T"(B‘/Bz) / T"(B,/Bz,
r'ia,) r'(a) ==

s
'lA/A) (R« B
\ T"(A1/A2)

- AH"(B,/B;) (16)

- AH"(A//A) =

- AH"(B1/By) (17)

3
[ &g

A

Fig. 5. Phase diagram of the condensed system
A.(A;)—B.(B;) with continuous liquid and
solid solutions of high temperature polymorphic
modifications of both components A and B. In
subsolidus region limiting solid solutions formed
on the basis of low temperature polymorphic
modifications of components A and B coexist in
equilibrium. There is one eutectoid point in'this
phase diagram.
594

Fig. 6. Phase diagram of the condensed system
Ai(Az)—Bi(B:) with continuous liquid and
solid solutions formed by high temperature
polymorphic modifications of both components
A and B. Low temperature modifications of
these components have only limiting miscibility.
There is one peritectoid point in the subsolidus
region.
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THERMODYNAMICS OF PHASE EQUILIBRIA. 1V

If the temperature of polymorphic modification T of a given component
increases as a result of addition of the other component then we observe in the
phase diagram a peritectoid point (Fig. 6). There are phase diagrams which have in
the subsolidus region both eutectoid and peritectoid points (Fig. 7).

For parts of the binodal curve (V, U) and (W, Q) (Figs. 6 and 7) we can write
according to Tamman [5] a simple logarithmic relation

In x(i)=a+b/T
From the shape of this expression one can presume that the equation of binodal
curve is formally similar to the LeChatelier—Shreder equation.
c) Continuous solid solutions are formed'in the subsolidus region

We shall study phase diagrams of the type illustrated in Fig. 8. Using the method
of four-term isothermal-isobaric AG cycle [6] we obtain the following relationships

a'(A) _ AH"(AJ/A,) 1 1

he@a=" rR [T"(A,/Az) "7‘] (18)
a'(B;) _ AH“(Bx/Bz) 1 1

@)=~ R ' [T"(Bl/Bz) _7"] (19)

The relationships (18) and (19) hold exactly under the assumption that AH" does
not depend on temperature. This simplification is fulfilled satisfactorily when

| T*(B./B;) — T"(A1/A2)|(100 K

'B,) @,
(8,/B,)
¢ r,
T'A) Ay gy 7"8,/8,)
(A,/A,) A+ By
3 tr
7"(A /A, _—
rB,/B) ¢ (R3+ By
AW v B A B

Fig. 7. Phase diagram of the condensed system
Ai(A;)—B (B, B;) with continuous liquid and
solid solutions of high temperature polymorphic
modifications of both components A and B.
Pairs of the polymorphic modifications A, and
B: and of A; and B;, respectively, have only
limiting mutual miscibility. In the subsolidus
region there is one eutectoid and one peritec-
toid point; T(x) < T().
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Fig. 8. Phase diagram of the condensed system

Ai(A:)—B,(B:) with continuous liquid and

solid solutions of high temperature polymorphic

modifications of both components A and B. In

the subsolidus region continuous solid solutions

(A% +B:) coexist in equilibrium with continuous
solid solutions (A3 + B3).
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If the solid solutions are ideal it holds that a(i) = x(i) and because x(i) + x(j)=1
we get

X (A1) AH"(A[/Az) 1 1
o g (A R [T"(AI/A;) "T’] ' (20)
1-x (Al) AH“(BI/BZ) 1 1
v R T"(B./B,)) T (21}
Let us introduce new variables
(A)/x(A2)=M; [1-x(A))/[1-x(A)]=Q
Then we can write
YA )= __1_0 .
1-Q
X (Az) fz(T) = M— O (23)
M-1
x(B)—fa(T)—F—Q'Q (24)
X(B) =£(T) =2~ 1 (25)

Further we can determine the slopes of tangents to the curves of monovariant
phase equilibrium in the subsolidus region [7] for x(A)—1 or for x(B)—1

o (aan = R LT AVA g1

AH'(A/A)) ¢ (26)
k™ (Au/A) =R A[IZI’“}%;QZ))JZ q-1 (27)
@)= ey @
k° ‘(BI/B2)=R'A[:;:(§‘//BB:))]2 1 (29)
For the quantities 72 and g it holds
A= AH“(Q R, [T"(Ai/Az) - T“(};,/Bz)] (9
ing =2 R [y T"(A:/Az)] 31)
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THERMODYNAMICS OF PHASE EQUILIBRIA. IV

From eqns (26) and (27) we found that

k”*(A1/A2)/ k**(A1/A2)=1/q (32)
From eqns (28) and (29) it follows further that
k%*(B1/B2)/ k**(Bi/B2)=1/m (33)

It should be stressed that eqns (32) and (33) hold not only for ideal but also for
real solid solutions. The solutions must be, however, of the first kind, i.e. it must
hold that
da(i) _
0% dx(i) .

If eqn (34) fulfilled eqns (32) and (33) have the character of criteria of
thermodynamic consistency for the course of curves of monovariant phase equilib-
rium of polymorphic modifications in the subsolidus region.

Practical validity of these equations consists in that they allow to calculate from
the course of curves of monovariant equilibrium the enthalpies of modification
transitions. Thus from the curve measured in the vicinity of the point T"(A,/Az)
(viz. for x(A)—1) it is possible to calculate the quantity AH"(B:/B;) of the
reaction B *—B}* at the point T"(B:/B;) (viz. for x(B)—1).

(34)

References

1. Dodé, M. and Hagege, R., C. R. Acad. Sci. (Paris) 248, 2339 (1959).

2. Malinovsky, M., Chem. Zvesti 25, 92 (1971).

3. Malinovsky, M., Chem. Zvesti 28, 489 (1974).

4. Hagege, R., C. R. Acad. Sci. (Paris) 249, 956 (1959).

5. Tammann, G., Metallovedeniye. Osoboe nauchno-tekhnicheskoe izdatelstvo, Moscow—Leningrad,
1935.

6. Kostensk4, 1. and Malinovsky, M., Chem. Zvesti 36, 577 (1982).

7. Malinovsky, M., Ko3tensk4, 1., and Galov4, M., Collect. Czech. Chem. Commun. 38, 2823 (1973).

Translated by P. Fellner

Chem. zvesti 36 (5) 589—597 (1982) 597



