Methode zur Berechnung der Quantenausbeuten von Photoprozessen für einzelne kinetisch labile Komplexe in Lösungen

J. SÝKORA, J. ŠIMA und D. VALIGURA

Lehrstuhl für Anorganische Chemie der Slowakischen Technischen Hochschule, 880 37 Bratislava

Eingegangen am 21. Januar 1981

In der vorliegenden Arbeit wird eine Methode zur Berechnung der Quantenausbeute von Photoprozessen für einzelne kinetisch labile Komplexe in Lösungen vorgeschlagen. Die Bedingungen für die Anwendung der vorgeschlagenen Methode im allgemeinen werden diskutiert und als Beispiel wird die Berechnung von Quantenausbeuten für die einzelnen Chlorokupfer(II)-Komplexe in Acetonitril gebracht.

The paper presents a method for calculation of quantum yields of photoprocesses of individual kinetically labile complexes in solutions. Conditions of the applications of the above method are discussed in general and an example for the calculation of quantum yields of individual chlorocopper(II) complexes in acetonitrile is presented.

В работе предлагается метод расчета квантовых выходов фотохимических процессов отдельных кинетически неустойчивых комплексов в растворах. Обсуждаются условия использования предложенного метода вообще и как пример приводится расчет квантовых выходов отдельных хлоридных комплексов меди(II) в ацетонитриле.

Der überwiegende Teil der in der Literatur veröffentlichten Werte für Quantenausbeute Φ bezieht sich auf Systeme mit nur einem photoaktiven Komplex, der gewöhnlich kinetisch inert ist [1]. In Systemen mit kinetisch labilen Komplexen wird nur die Gesamtquantenausbeute Φ angeführt, ohne das Maß zu bestimmen, in dem die einzelnen Komplexe zu den Φ -Werten beitragen [2, 3], bzw. dieser Φ -Wert bezieht sich auf einen Komplex, dessen Konzentration, verglichen mit den übrigen Komplexen, viel höher ist [4].

Vom Standpunkt der Quantifizierung der Abhängigkeit der Photoreaktivität von Komplexen von ihrer Zusanmensetzung ist es notwendig, die Werte der Quantenausbeute Φ_i der einzelnen kinetisch labilen Komplexe bestimmen, die sich im System in dynamischem Gleichgewicht befinden. Wie aus einer Analyse der Literaturangaben ersichtlich ist, wurde das Problem der Berechnung von Φ_i bis nun nicht exakt gelöst.

In der vorliegenden Arbeit wird eine Methode vorgeschlagen, die aus den Werten der Gesamtquantenausbeute Φ die Bestimmung von Φ_i für die Photoreduktion bzw. Photoluminiszenz ermöglicht. Als Beispiel für die Anwendung dieser Methode wird hier die Berechnung von Φ_i für die einzelnen Chlorokupfer(II)-Komplexe in Acetonitril gebracht. Bei Kenntnis der Fraktionskonzentrationen der einzelnen Komplexformen in der Lösung kann die vorgeschlagene Methode auf jedes beliebige System kinetisch labiler Komplexe angewendet werden. Als praktisch immer gegebene Voraussetzung wird auch angenommen, daß alle Komplexe, für die die Φ_i -Werte berechnet werden sollen, analogen Photovorgängen unterliegen.

Der Gleichgewichtszustand im System kinetisch labiler Komplexe mit dem zentralen Ion M^{p+} und den Liganden L^{q-} (die Ladungen der Komplexe und die Lösungsmittelmoleküle in der Koordinationssphäre wurden der Übersichtlichkeit halber nicht eingezeichnet) kann durch Schema (1) ausgedrückt werden:

$$M^{p+} \stackrel{L}{\rightleftharpoons} ML \stackrel{L}{\rightleftharpoons} \dots ML_i \stackrel{L}{\rightleftharpoons} \dots ML_n$$
 (1)

Die Absorbanz eines Systems von n absorbierenden Komplexen bei einer gegebenen Wellenlänge λ wird durch die Beziehung (2) definiert

$$A_{\lambda} = c_{\mathsf{M}} d \sum_{i} \alpha_{i} \varepsilon_{i,\lambda} \tag{2}$$

wobei $\alpha_i = c_i/c_M$ Fraktionskonzentration des i-ten Komplexes (i = 1, 2 ... n),

c_i Gleichgewichtskonzentration des i-ten Komplexes,

c_M analytische Konzentration des zentralen Ions,

 $\varepsilon_{i,\lambda}$ molarer Absorptionskoeffizient des *i*-ten Komplexes bei Wellenlänge λ ,

d Küvettenweite.

Die Beziehung zwischen der Strahlungsmenge I_i , absorbiert vom i-ten Komplex in der Zeiteinheit und zwischen der in das System einfallenden Strahlungsmenge I_0 wiedergibt die Gleichung (3)

$$I_{i} = I_{0}(1 - 10^{-c_{M}d} \sum_{i=1}^{c_{\alpha_{i}} \epsilon_{i,\lambda}}) \frac{\alpha_{i} \epsilon_{i,\lambda}}{\sum_{i} \alpha_{i} \epsilon_{i,\lambda}}$$

$$(3)$$

Werden die photoangeregten Komplexe ML* durch einen Redoxvorgang desaktiviert, wird dessen Geschwindigkeit v durch die Beziehung (4) definiert

$$v = -\frac{\mathrm{d}c_{\mathrm{M}}}{\mathrm{d}t} = \Phi_{\mathrm{exp}}^{\mathrm{r}} I_{\mathrm{a}} \tag{4}$$

wobei das Symbol Φ_{\exp}^r die experimentell bestimmte Gesamtquantenausbeute des Photoredoxprozesses bezeichnet und die Symbole $I_a = \sum_i I_i$ und v die Augenblick-

werte der Größen I und v in der gegebenen Zeit darstellen. Es ist eine ziemlich häufige Erscheinung, daß Φ_{\exp}^r zufolge sekundärer thermischer Reaktionen während der Bestrahlung eine Änderung erfährt. Vom praktischen Gesichtspunkt erscheint es daher nützlich, die Gesamtquantenausbeute $\Phi_{t=0}$ approximiert auf die Bestrahlungszeit t=0 zu betrachten.

Wenn verschiedene Komplexe ML_i einem Photoredoxvorgang mit verschiedenen Quantenausbeuten Φ_i^r unterliegen, dann gilt die Beziehung (5)

$$-\frac{\mathrm{d}c_{\mathsf{M}}}{\mathrm{d}t} = -\sum_{i} \frac{\mathrm{d}c_{\mathsf{ML}i}}{\mathrm{d}t} = \sum_{i} \Phi_{i}^{\mathsf{r}} I_{i} \tag{5}$$

und auch (6)

$$\Phi_{\exp}^{r} = \frac{\sum_{i} \Phi_{i}^{r} \alpha_{i} \varepsilon_{i,\lambda}}{\sum_{i} \alpha_{i} \varepsilon_{i,\lambda}}$$
 (6)

Für die Berechnung von Φ_i^r muß daher ein System von wenigstens n linearen Gleichungen gelöst werden, wobei die bei n verschiedenen Verhältnissen von $c_M : c_L$ gewonnenen Φ_{\exp}^r -Werte verwendet werden. Für den Fall, daß bei der gegebenen Wellenlänge nur m Komplexe absorbieren (m < n), genügt für die Berechnung von Φ_i^r die Bestimmung von Φ_{\exp}^r bei m Verhältnissen von $c_M : c_L$.

Analog kann auch eine Beziehung für die Berechnung der Quantenausbeute der Luminiszenz Φ_i^1 für die einzelnen emittierenden Komplexe aufgestellt werden (7)

$$\Phi_{\exp}^{l} = \frac{\sum_{i} \Phi_{i}^{l} \alpha_{i} \varepsilon_{i,\lambda}}{\sum_{i} \alpha_{i} \varepsilon_{i,\lambda}}$$
 (7)

Selbstverständlich werden die bei den Berechnungen angewendeten Werte α_i und $\varepsilon_{i,\lambda}$ immer auf-die Absorption der monochromatischen Strahlung bezogen unter den Bedingungen, unter denen die Absorptions- (Bez. (6)), bzw. die Emissionsspektren (Bez. (7)) registriert wurden (Druck, Temperatur).

Ein photochemisches Studium des Systems Cu(II)—Cl⁻—Acetonitril (A) führte zur Erkenntnis [3, 5, 6], daß eine monochromatische Bestrahlung der Komplexe von [CuCl_iA_{4-i}]⁻⁽ⁱ⁻²⁾ (wobei i = 1, 2, 3, 4) im Bereich von LMCT-Absorptionsbanden die Reduktion von Cu(II) zu Cu(I) und die Oxidation des Chloroliganden auf das Radikal Cl· [7] zur Folge hat. Auf Grund der Angaben über die Gesamtquan-

Tabelle 1

Quantenausbeute der Photoreduktion von Cu(II) zu Cu(I) Φ_{exp}^c (approximiert auf die Bestrahlungszeit t = 0, Bestrahlungswellenlänge $\lambda = 470 \text{ nm}$) für verschiedene Molarverhältnisse von [Cu(II)] : [Cl⁻]

[Cu(II)]:[Cl ⁻]	1:2	1:3	1:4	1:8
$\Phi_{ m exp}^{r}$	0,14	0,093	0,067	0,056

Tabelle 2

Benützte Werte von $\varepsilon_{i,470}$ und die Φ_i^r -Werte berechnet für einzelne Chlorokupfer(II)-Komplexe in Acetonitril

$[\operatorname{CuCl}_{i} \mathbf{A}_{4-i}]^{-(i-2)}$	${ m M^{-1}cm^{-1}}$	Φ';	
CuCl ₂ A ₂	$217,15 \pm 46,78$	$0,299 \pm 0,021$	
[CuCl ₃ A] ⁻	$1475,74 \pm 22,72$	$0,0926 \pm 0,0016$	
$[CuCl_4]^{2-}$	$1289,54 \pm 29,53$	$0,0530 \pm 0,0016$	

tenausbeute (Tabelle 1) der Photoreduktion von Cu(II) [8, 9], der veröffentlichten Werte von α_i [10] und unter Benützung der durch Präzisierung der ε_i -Werte (Tabelle 2), die in Arbeit [11] angeführt sind, wurden nach Bez. (6) die Φ_i^r für die Komplexe [CuCl_i]^{-(t-2)} (i=2,3,4) berechnet, die im sichtbaren Bereich des Spektrums photochemisch aktiv sind. Bei der Berechnung von Φ_i^r für die angeführten drei Komplexe wurden die Ausgangsdaten α_i, ε_i und $\Phi_{\rm exp}^r$ bei vier verschiedenen molaren Verhältnissen von [Cu(II)]: [Cl⁻] benützt. Dieser Umstand ermöglichte auch die Berechnung der Standardabweichungen für die einzelnen Φ_i^r -Werte. Die erhaltenen Φ_i^r -Werte (Tabelle 2) weisen darauf hin, daß die Fähigkeit elektronisch angeregter Komplexe durch einen Redoxvorgang desaktiviert zu werden bei einer Anregung im Bereich von 470 nm in der Reihenfolge von CuCl₂A₂>[CuCl₃A]⁻>[CuCl₄]²⁻ sinken wird. Zufolge der Tatsache, daß α_i vom molaren Verhältnis von [Cu(II)]: [Cl⁻] in der Lösung abhängig ist, können durch Änderungen dieses Verhältnisses auch die Photoredoxeigenschaften des Systems als Ganzes gezielt beeinflußt werden.

Die vorgeschlagene Methode zur Berechnung von Φ_i kann nicht nur vom theoretischen Standpunkt, sondern auch im Hinblick auf ihre praktische Anwendung (z. B. auf dem Gebiet der photokatalytischen Reaktionen) von Bedeutung sein.

Die Autoren danken Herrn Prof. Dipl. Ing. Ján Gažo, DrSc., korrespondierendem Mitglied der SAW und ČSAW für anregende Diskussionen.

Literatur

- 1. Endicott, J. F., Surv. Progr. Chem. 7, 41 (1976).
- 2. Šima, J., Horváth, E., Zliechovcová, H. und Gažo, J., Z. Anorg. Allg. Chem. 451, 151 (1979).
- 3. Roewer, G. und Kempe, G., Wiss. Z. Techn. Hochsch. Chem. Carl Schorlemmer Leuna-Merseburg 18, 87 (1976).
- 4. Langford, C. und Carey, J. H., Can. J. Chem. 53, 2430 (1975).
- 5. Sýkora, J., Horváth, E. und Gažo, J., Z. Anorg. Allg. Chem. 442, 245 (1978).
- 6. Baumann, H. und Timpe, H. J., J. Prakt. Chem. 319, 934 (1977).
- 7. Sýkora, J., Giannini, I. und Diomedi Camassei, F., J. Chem. Soc., Chem. Commun. 1978, 207.
- 8. Cervone, E., Diomedi Camessei, F., Giannini, I. und Sýkora, J., J. Photochem. 11, 321 (1979).
- 9. Sýkora, J., Habilitationsschrift. Slowakische Technische Hochschule, Bratislava 1980.
- Sýkora, J., Horváth, E. und Gažo, J., Proc. 6th Conference on Coordination Chemistry, S. 247. Bratislava—Smolenice 1976.
- 11. Sýkora, J., Horváth, E. und Gažo, J., Z. Chem. 18, 346 (1978).

Übersetzt von T. Guttmannová