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The nature of the maximum overlap criterion for choice of optimum hybrid
atomic orbitals (HAOs) was analyzed. Using the quantum-mechanical virial
theorem the molecular binding energy on MO LCHAO level of approximation
through kinetic integrals has been expressed. As the kinetic integrals for
Slater-type AOs can be expressed in terms of overlap integrals, the maximiza-
tion of the molecular binding energy corresponds to the maximization of
a weighted sum of overlap integrals. Semiempirical weighted parameters K
which secure the reproduction of the total molecular binding energy are
transferable in a good approximation from one molecule, to another. Binding
energies for nine halomethanes using six different basis sets of AOs are
perfectly reproduced.

O6cyxpaercss NpUpoOfa KPUTEPUS MAKCUMAlIbHOTO NEPEKPbIBaHUs AJIs BbI-
60opa onTHManbHbIX TMOpHOHBLIX aTOMHbIX opoutanei (FCAQO). Hcnoab3ys
KBAHTOBO-MEXAHHUYECKYIO BHPHAIbLHYIO TEOpPEMY, Obla BbIpaK€Ha MOJIEKY-
JispHas cBsi3biBaloulast 3Heprus Ha ypoeHe MO JIKAO npubauxeHus yepes
KMHETHYECKHE MHTerpanbl. [TOCKONbKY KMHETHYECKHE MHTETPalbl AJIsl aTOM-
HbIX opbuTanei Cneﬁ:repoacxoro THIA MOTYT ObITb BbIPAXKEHbI Y€pe3 MHTE-
rpajibl NepeKpbIBaHMS, JOCTHXKEHUIO MAKCHMYMa MOJIEKYJISIDHON HEPTUHM CBSI-
34 COOTBETCTBYET MaKCHMYM B3BELIEHHOH CYMMbI MHTErPAJIOB NIEPEKPbIBAHUS.
CeMHaMIIMpHYECKHE B3BEILEHHbIE mapameTpbl K, o6ecmeuyuBailolide BO-
CIPOMU3BOAUMOCTD OOLIEH MOJIEKYISIPHON 3HEPTHU CBSI3H, MOXHO C XODOLUHUM
NPUONHXXEHHEM IIPUMEHATH OT OJHON MOJIEKYJIbI ISl APYrOA. DHEPIrUM CBA3M
AEBATH raJIOFEHOMETAHOB C UCMOJBL30BAHUEM LIECTU pPa3MyHbIX HAbopoB AO
MOJIHOCTBIO BOCIHPOU3BOAMMBI.
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Hybrid atomic orbitals (HAOs) introduced by Pauling [1] form a suitable basis
for developing “‘chemical concepts’ in the theory of chemical bond. One of the
very important applications of the use of HAOs is the construction of localized
molecular orbitals. These localized orbitals enable the evaluation of collective
molecular properties, such as binding energies, bond angles, force constants, dipole
moments, molecular quadrupole moments, diamagnetic susceptibilities, charge
distributions, nuclear magnetic coupling constants, quadrupole coupling constants,
etc.

HAOs are defined by an orthogonal transformation applied to the basis of the
atomic orbitals (A Os). The problem of selection of the “optimum” HAOs has been
studied intensively [2—6], but an unambiguous criterion for choice of “optimum”
HAOs does not exist.

A very important property of HAOs is their directional nature. The centre of
electron density of HAO is situated outside of atomic nuclei, so that we can define
the ““direction” of HAO as a vector nucleus-centre of electron density of the HAO.
HAOs are often chosen in order to be situated on “covalent bonds™, so that the
directional vectors of pairs of HAOs are colinear.

It is well known that the resonance integrals are the major terms in the total
molecular binding energy. The resonance integral is in a good approximation
proportional to the overlap integral, so that the molecular binding energy can be
approximated as a weighted sum of overlap integrals. Since HAOs situated on
“‘covalent bonds” give a higher overlap than pure AOs, it is reasonable to assume
that the hybridization procedure can be based on the criterion of maximum overlap
[2—5]. Various methods based on the maximum overlap criterion have been
successively generalized [7—12] and finally, an extended maximum overlap
approximation (EMOA) method has been formulated [13]. This method enables
the construction of maximum overlapping HAOs in arbitrary molecules. However,
the maximum overlap criterion is widely used, its physical nature has not been yet
properly demonstrated. In the present paper we shall try to demonstrate how the
maximum overlap criterion is based on the quantum-mechanical virial theorem.

Theory

For a normalized electron ground-state wave function at the equilibrium
geometry, in accordance with the quantum-mechanical virial theorem [14], the
following equation
1 N

AL

14

Eo=<qfo

%> (1)

is valid. Here, E, is the ground-state total molecular energy in the Born—
Oppenheimer approximation and N is the number of electrons in a molecule. The

290 Chem. zvesti 33 (3) 289—299 (1979)



CALCULATIONS ON POLYATOMIC MOLECULES. III

electron wave function ¥, in the MO LCAOQO approximation is expressed through
an antisymmetrized product of occupied molecular spinorbitals, where molecular
orbitals {®,} are expanded into the basis of real one-centre functions {:}
— atomic orbitals (LCAO approximation) or hybrid atomic orbitals (LCHAO
approximation)

D, = 2 Cuii (2)

Then for an orthogonal set of molecular spinorbitals we obtain

EO=_ZPiiTi' (3)
where
1. .
T=(w| -3 Vi|wi) “)

is the kinetic integral over one-centre basis function {y;} and

Pi=> cucy %
H

is the charge density (bond order) matrix element (x runs over all occupied
spinorbitals). Eqn (3) may be used to test the MO LCAO wave function ; but in the
present work we exploit this equation as a criterion to determine the optimum
hybrid atomic orbitals.

Let us define a unitary transformation between the orthogonal bases of
one-centre functions {y{"} and {x%} on the m-th centre

Mm
Yo' = 2 alixe (6)

The total molecular energy is invariant by an arbitrary unitary transformation
(including hybridization)

G m n
m| 1 )
Eo= =3 5 5 (vl | -5V i)
m.n i Ji
G Mm Mn 1
= -3 3 3 Puluf | -3%x7) %)
m.n i i
where G is the number of atoms in a molecule and
Mﬂl Mll
Pk1=zzpiiarka;',l (8)
i Ji
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Analogously, for the total energy of individual m-th atom Eg the following
expression is satisfied
M

0= —EP..T., (9)

where Pi; is the atomic charge density matrix which has the trivial diagonal
elements: 0, 1 or 2. Then, for the molecular binding energy £ we obtain

c M, M G M, M,

£= 2 2 2 T;i(P; — P1:dy) + 2 Z 2 P;T;. (10)

Eqn (10) is valid on MO LCAO (or MO LCHAO) level of approximation and it is
fulfilled at the self-consistency and at the equilibrium state. Therefore this equation
cannot be used to derive a variational procedure for SCF variables, e.g. for charge
density (bond order) matrix elements. These elements may be evaluated in given
basis of one-centre functions by solving the Roothaan equations [15]. But eqn (10)
permits the solution of a reverse problem : the explicit determination of basis set of
one-centre functions {y{} in the form (6) if the elements P; are known.
Introducing some assumptions into eqn (10) we obtain the criterion for choice of
HAOs. Strictly speaking, the virial theorem is valid only at the Hartree—Fock
limit. However, practical calculations showed that it is well satisfied even with small
basis sets so that assuming a minimal basis set in eqn (10) does not mean any
shortcoming of our theoretical approach. The other approximations involved are
listed below.

Approximation 1

We assume the validity

G M, M,

ZZZTM(PH Pii6;)=0 (11)

Here we assume that: (i) monocentric charge density matrix-elements are equal in
an individual atom and in that atom in a molecule (it is wel valid in slightly polar
molecules) and (ii) off-diagonal monocentric kinetic integrals vanish. Using this
approximation the molecular binding energy can be rewritten in the form

1 G M M

5 m#n Z Z E (12)
where

ET;"=2P;T; (13)
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are thé’increments of the molecular binding energy which will be called the
particular binding energies. Thus the maximum value of the following functional

G M, M,

B=e—32 3 DAL (14)

may be regarded as a generalized criterion for determination of HAOs (A, are
Lagrangian multipliers). Eqn (14) represents the maximization of molecular
binding energy under the constraint condition that the orbitals are kept
orthonormal.

For normalized Slater-type AOs in real form

Xntm=QE)@0)Tr" T eV Z1 D, @) (15)

(Z.. (%, @) are the normalized spherical harmonics) the following equation is valid

[16]
1 _, 2
<Xn.l.m —Evp Xn" ‘,m’>= —% (Van.l.mlxu’. m) =
= ‘%szuxn‘,_mle. m) =220) (20 = )7 (Xncttim | X, o) +
+4(n+)(n—-1-1)[2n2n - 1)2n —2)2n = 3)] "> (Xn-2.t.m| Xn". ")}
(16)
Combining eqns (4), (6), (12), (13), and (16) the condition
6%=0 (17)

corresponds to the maximum of weighted sum of overlap integrals and thus the
maximum overlap criterion for choice of HAOs is derived.

In a molecule any orbital on a given atom can be expanded in terms of the
complete orthogonal set of one-centre functions of the other atom of the molecule

(p'l=2 (w.-”lw?><wfl=z ST (e (18)
Then

25 Zs

(2 SO T+ Y, SUSTLY (19)

m»—
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Approximation 2

Two-centre kinetic integrals in a minimum (or in the valence) basis set are
approximated as follows

1
Tii=‘2‘ (T + Tj;) Sy (20)

which is the well-known Mulliken approximation of two-centre one-electron
integrals [17]. According to this approximation the molecular binding energy can
be rewritten in the form

M M

1 2 5 e m,n m.,n
m#*n i i
where
K7i"=Py(Tu+ Ty) (22)

Expression (21) represents the weighted sum of overlap integrals between HAOs ;

particular binding energies E[";" are directly proportional to the overlap integrals of
HAOs

E7"=K7;"ST;" (23)

Approximation 3

Elements K[ ;" can be regarded as numerical parameters transferable from one
molecule to another, which depend only on the quality of the bonded atomic pair.
These parameters may be evaluated in a semiempirical way.

Let us deal now with directional properties of HAOs. It is well known that
HAOs may be chosen in such a way that their directional vectors with directions of
“‘covalent bonds’’ are parallel. For example, in the methane molecule using group
theory we obtain HAOs on carbon atom the directional vectors of which are
situated on C—H bonds. However, many examples are known in which real HAOs
oriented in the bond directions do not exist (e.g. in the cyclopropane molecule),
and it is necessary to introduce some deviation from the bond direction [18, 19].
The directional nature of HAOs enables us to construct strictly localized molecular
orbitals which describe two-centre ‘“‘covalent bonds’” Therefore we define the
“optimum” hybrid atomic orbitals as those:

(i) which maximize the total molecular binding energy according to eqn (21)
under the condition of orthonormality of HAOs on each centre;

(ii) which have the minimum deviation from bond directions.
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In order to secure the second condition we must define some ‘“‘bonding situation”
in a molecule, e.g. we must describe ‘‘covalent bonds” in terms of HAOs’ pairs. Let
us have independent numbering of :

(i) atoms (index me(1,G));

(ii) HAOs on the given atom (index ie (1, M.,));

(iii) ““covalent bonds” (1, 2, ...).

We define a discrete topological function f(m, i) on the set of indices {m, i},
the value of which is equal to the bond number. The topological function f(m, i)
fully describes the molecular bonding model: the nonzero topological factor
(1 = 8m.n) Ottm.i).1m. 1y S€lects from all indices {m, i} and {n, j} only pairs of HAOs
i and vy which are oriented in the direction of the same bond (Fig. 1). Lone lobes
(“‘nonbonding HAO’’) may be considered as ‘‘nonconnected bonds’’ which do not
give a contribution to the molecular binding energy. For lone lobe vy we have

M

n

G
z E (1 _6m,n)6f(m.i').f(n,i)=0 (24)

Fig. 1. Numbering system for description of molecular bonding model.

With respect to both conditions mentioned for optimum HAOs, these may be
chosen so as to maximize the following expression

M

m M,

1 G
52 2 viraikai Xk | XY (1= 8mn)  Stemiricn.id (25)

m,n ik j, I

Eqn (25) corresponds to the weighted sum of overlap integrals between ‘“‘bonding™
HAOs and was used as a criterion for selection of HAOS in the EMOA method.
A simple matrix formula for simultaneous optimization of “bonding” HAOs on all
centres of the molecule has been derived in [13]. “Nonbonding” HAOs may be
obtained as a complement to the orthonormal set of HAOs on each centre.
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It is possible to show [20] that the molecular binding energy expressed by eqn
(25) can be regarded as a scalar invariant of a second-rank tensor which is
constructed through the Kronecker products of all vector spaces W,, where
HAOs =y e W,.. However, a scalar invariant of any tensor does not depend on
the use of basic functions. Thus the molecular binding energy should be invariant
using various basis sets of atomic orbitals. Strictly speaking, it is true only in
complete Hilbert space. The validity of this assumption must be verified by
numerical calculations for various valence basis sets.

Results and discussion

In this paper the maximum overlap criterion for the choice of optimum hybrid
atomic orbitals has been theoretically studied. Using the quantum-mechanical
virial theorem the molecular binding energy has been expressed as a function of
kinetic integrals in the HAOs’ basis. As the kinetic integrals for Slater-type AOs
through overlap integrals can be expressed, the generalized criterion of the
maximum overlap can be obtained by maximization of total binding energy. Due to
some approximations the molecular binding energy has beci: expressed as
a weighted sum of overlap integrals. Weighted parameters K ;" which secure the
reproduction of molecular binding energy depend only on monocentric kinetic
integrals and bond-order matrix elements P;;"

Localized “covalent bonds” can be described with strictly localized molecular
orbitals (SLMOs) which are defined as follows

D, =biyi +b;y; (26)

where coefficients b; and b; expand the u-th SLMO into pair of HAOs with
maximum overlap. Expanding coefficients are constrained by the following nor-
malization condition

bi+bl+2b:b;ST"=1 (27)
In this case the bond-order matrix elements are
P?_‘;'"=W“b,'bi (28)

(w, is the SLMO’s occupation number). It is interesting to examine the functional
dependence of (b;b;) vs. b; for fixed overlap integrals S7";". In Fig. 2 we can see that
a change in bond polarity does not affect the bond orders significantly. Therefore, it
is reasonable to assume that parameters Ki ;" for a given atomic pair are
transferable from one molecule to another.

The ideas presented in the previous part of this article have been numerically
tested on the series of halomethanes. During the calculation we have used the
experimental geometries of the molecules. The invariance of the molecular binding
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b; b; T T T T
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Fig. 2. Functional dependence of product
of SLMO'’s expanding coefficients (bb;) 0.2
vs. b; for fixed overlap integrals S; via

eqn (28).
1.5,=0.0;2.5,=0.3;3.5,=0.5; 0.0
4.5,=0.7; 5.5,=1.0. 0.0 0.2 0.4 0.6 0.8 b,

energy was tested using six different basis sets of AOs. Parameters K7 ;" for bonds
C—X (X=H, F, Cl, Br) were determined in order to reproduce the molecular
binding energies of CX, molecules (Table 1). These parameters were used in the
EMOA method for calculations of optimum HAGOs, particular binding energies
and total binding energy of CH;X, CH,X,, CHX; (X=F, Cl, Br) types of molecu-
les. The results are presented in Tables 2 and 3.

Particular binding energies (Table 2) are in a good agreement with empirical
values [21]: ES"=414—439, ES"=443—485, E; “=310—326, and ES* =
=259—268 (in kJ mol_l). In the series of the molecules CH;X, CH,X,, and CHX;
the particular binding energies for C—H as well as for C—X bonds increase. This is
in a good harmony with the established thermal stability of tri-halomethanes
relative to mono-halomethanes. Total molecular binding energies (Table 3) for all
six bases are in a good agreement with experiments: deviations from experimental
data are less than 2%.

Table 1

Parameters K by different valence bases [kJ mol~']

Valence set

Bond

a b c d e f
C—H 604.617 592.266 547.861 569.928 575.559 575.329
C—F 852.913 825.712 718.589 762.325 791.747 796.634
CcC—l 549.229 566.430 465.922 530.594 536.887 540.443
C—Br — 496.310 438.533 451.705 — 470.838

a) Slater [24]; b) single zeta SCF [25]; ¢) Burns [26); d) Froese [27, 28]; e) double zetas SCF [29];
f) poly zetas SCF [29].
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Table 2

Particular binding energies [kJ mol™']

Used geometry Valence set*

Molecule Bond ifersans Angle

[107°m]  [degree]

CH,F C—H 1.097 FCH 108.9 418.8 4188 417.6 418.0 417.1 418.0
C—F 1.3852 4439 446.4 4577 4531 457.7 4531
CH,F, C—H 1.093 HCH 10946 4243 4238 4209 4222 420.1 4222
C—F 1360 FCF 108.5 461.5 463.2 4703 4674 4703 4674
CHF;, C—H 1.098 FCH 110.14 428.0 427.2 423.0 4247 4213 4247

C—F 1.332 480.7 481.2 4833 4824 4833 4824
CH,C1 C—H 1.0959 CICH 1084 419.2 4197 423.0 4247 4213 4247
C—Cl 1.78123 311.7 3121 3159 3134 3146 3134

CHCl, C—H 1.082 HCH 109.5 4272 4272 4234 4255 4243 4255
c—C 1.772 CICCl 112.0 317.6 318.0 3205 3188 319.7 3188
CHCl; C—H 1.073 CICH 108.2 4343 4347 4276 431.8 4293 4318

C—l 1.762 323.8 323.8 3243 3243 3243 3238
CH;Br C—H 1.0954 BrCH 107.23 — 420.5 419.2 4197 — 419.7
C—Br 1.9388 — 261.1 2628 2619 — 261.9
CH,Br, C—H 1.093 BrCBr 112.0 —_ 425.1 4226 4238 — 423.8
C—Br 193 HCH 109.5 = 2669 267.8 2674 — 267.4
CHBr, C—H 1.068 BrCH 108.11 — 4389 432.6 435.6 — 435.6
C—Br 193 — 269.4 2694 2694 — 269.4

* References see in Table 1.

Table 3

Molecular binding energies [kJ mol™']

Valence set**

Molecule Exptl.*
a b c d e f

CH,F 1719.6 1700.8 1702.5 1710.4 1707.1 1710.4 1708.7
CH,F, 1761.9 1771.9 1773.6 1782.4 1778.6 1780.7 1780.3
CHF, 1867.7 1870.2 1870.7 1873.2 1871.9 1871.5 1871.5
CH,Cl1 1576.1 1569.8 1570.3 1570.3 1570.3 1569.8 1569.4
CH.Cl, 1488.2 1489.9 1490.3 1487.0 1489.1 1487.4 1487.0
CHCl, 1397.0 1405.8 1406.2 1401.2 1404.2 1402.1 1401.6
CH,Br 1518.4 — 1522.1 1520.5 1521.3 — 1518.8
CH,Br, 1378.6 — 1384.5 1380.7 1382.4 — 1378.6
CHBr, 1243.1 — 1247.3 1241.4 1244.3 — 1240.1
* Ref. [30].

** References see in Table 1.
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The obtained results demonstrate that the EMOA method is useful for construc-
tion of the optimum HAOs in polar molecules. From this point of view we doubt
the statement of Randi¢ and Maksi¢ [22, 23] that the maximum overlap criterion
should be used only for nonpolar hydrocarbons. This method has been applied on
the large number of molecules (of the various types) which are built from H to Br
atoms, including first transition metal row atoms.
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