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The nature of the maximum overlap criterion for choice of optimum hybrid 

atomic orbitals (HAOs) was analyzed. Using the quantum-mechanical virial 

theorem the molecular binding energy on MO LCHAO level of approximation 

through kinetic integrals has been expressed. As the kinetic integrals for 

Slater-type AOs can be expressed in terms of overlap integrals, the maximiza­

tion of the molecular binding energy corresponds to the maximization of 

a weighted sum of overlap integrals. Semiempirical weighted parameters К 

which secure the reproduction of the total molecular binding energy are 

transferable in a good approximation from one molecule to another. Binding 

energies for nine halomethanes using six different basis sets of AOs are 

perfectly reproduced. 

Обсуждается природа критерия максимального перекрывания для вы­

бора оптимальных гибридных атомных орбиталей (ГАО). Используя 

квантово-механическую вириальную теорему, была выражена молеку­

лярная связывающая энергия на уровне МО ЛКАО приближения через 

кинетические интегралы. Поскольку кинетические интегралы для атом­

ных орбиталей Слейтеровского типа могут быть выражены через инте­

гралы перекрывания, достижению максимума молекулярной энергии свя­

зи соответствует максимум взвешенной суммы интегралов перекрывания. 

Семиэмпирические взвешенные параметры К, обеспечивающие во­

спроизводимость общей молекулярной энергии связи, можно с хорошим 

приближением применять от одной молекулы для другой. Энергии связи 

девяти галогенометанов с использованием шести различных наборов АО 

полностью воспроизводимы. 
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Hybrid atomic orbitals (HAOs) introduced by Pauling [1] form a suitable basis 
for developing "chemical concepts" in the theory of chemical bond. One of the 
very important applications of the use of HAOs is the construction of localized 
molecular orbitals. These localized orbitals enable the evaluation of collective 
molecular properties, such as binding energies, bond angles, force constants, dipóle 
moments, molecular quadrupole moments, diamagnetic susceptibilities, charge 
distributions, nuclear magnetic coupling constants, quadrupole coupling constants, 
etc. 

HAOs are defined by an orthogonal transformation applied to the basis of the 
atomic orbitals (AOs). The problem of selection of the "optimum" HAOs has been 
studied intensively [2—6], but an unambiguous criterion for choice of "optimum" 
HAOs does not exist. 

A very important property of HAOs is their directional nature. The centre of 
electron density of HAO is situated outside of atomic nuclei, so that we can define 
the "direction" of HAO as a vector nucleus-centre of electron density of the HAO. 
HAOs are often chosen in order to be situated on "covalent bonds", so that the 
directional vectors of pairs of HAOs are colinear. 

It is well known that the resonance integrals are the major terms in the total 
molecular binding energy. The resonance integral is in a good approximation 
proportional to the overlap integral, so that the molecular binding energy can be 
approximated as a weighted sum of overlap integrals. Since HAOs situated on 
"covalent bonds" give a higher overlap than pure AOs, it is reasonable to assume 
that the hybridization procedure can be based on the criterion of maximum overlap 
[2—5]. Various methods based on the maximum overlap criterion have been 
successively generalized [7—12] and finally, an extended maximum overlap 
approximation (EMOA) method has been formulated [13]. This method enables 
the construction of maximum overlapping HAOs in arbitrary molecules. However, 
the maximum overlap criterion is widely used, its physical nature has not been yet 
properly demonstrated. In the present paper we shall try to demonstrate how the 
maximum overlap criterion is based on the quantum-mechanical virial theorem. 

Theory 

For a normalized electron ground-state wave function at the equilibrium 
geometry, in accordance with the quantum-mechanical virial theorem [14], the 
following equation 

Eo=(4'o 
1 N 

2 P 
Vo) ( í ) 

is valid. Here, E0 is the ground-state total molecular energy in the Born— 
Oppenheimer approximation and N is the number of electrons in a molecule. The 
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electron wave function Wo in the MO LCAO approximation is expressed through 
an antisymmetrized product of occupied molecular spinorbitals, where molecular 
orbitals {Фм} are expanded into the basis of real one-centre functions {т/;,} 
— atomic orbitals (LCAO approximation) or hybrid atomic orbitals (LCHAO 
approximation) 

Фц = 2 з д ^ (2) 

Then for an orthogonal set of molecular spinorbitals we obtain 

M 

Eo = — ZJ P4T4 

where 

Tn^lVi •iv 2 

2 V p 
Vi 

is the kinetic integral over one-centre basis function {i/;,} and 

(3) 

(4) 

* - 2 C/u'Cui (5) 

is the charge density (bond order) matrix element (JU runs over all occupied 
spinorbitals). Eqn (3) may be used to test the MO LCAO wave function; but in the 
present work we exploit this equation as a criterion to determine the optimum 
hybrid atomic orbitals. 

Let us define a unitary transformation between the orthogonal bases of 
one-centre functions {ipT} and {xľ} on the m-th centre 

i ffi x ч m m , _. 

Vi = 2 , *••.*** (6) 

The total molecular energy is invariant by an arbitrary unitary transformation 
(including hybridization) 

2 V p 

G M m Mn 

= - 2 2 E Pkilxk 2 V p 

V/) = 

Xi 

where G is the number of atoms in a molecule and 

^ w = 2 2 Puaľkal.i 

(7) 

(в) 
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Analogously, for the total energy of individual w-th atom E о the following 
expression is satisfied 

Eo = -JJP
,uTii (9) 

where P'u is the atomic charge density matrix which has the trivial diagonal 
elements: 0, 1 or 2. Then, for the molecular binding energy e we obtain 

G м т м т G мт мп 

* = 2 X X Tii{pii-p'iiôii)+ 2 2 S W - uo) 

Eqn (ÍO) is valid on MO LCAO (or MO LCHAO) level of approximation and it is 
fulfilled at the self-consistency and at the equilibrium state. Therefore this equation 
cannot be used to derive a variational procedure for SCF variables, e.g. for charge 
density (bond order) matrix elements. These elements may be evaluated in given 
basis of one-centre functions by solving the Roothaan equations [15]. But eqn (10) 
permits the solution of a reverse problem: the explicit determination of basis set of 
one-centre functions {ipT} in the form (6) if the elements Рц are known. 
Introducing some assumptions into eqn (10) we obtain the criterion for choice of 
HAOs. Strictly speaking, the virial theorem is valid only at the Hartree—Fock 
limit. However, practical calculations showed that it is well satisfied even with small 
basis sets so that assuming a minimal basis set in eqn (10) does not mean any 
shortcoming of our theoretical approach. The other approximations involved are 
listed below. 

Approximation 1 

We assume the validity 

И Е а д - в д = о (in 
m i j 

Here we assume that: (i) monocentric charge density matrix elements are equal in 
an individual atom and in that atom in a molecule (it is weft valid in slightly polar 
molecules) and (ii) off-diagonal monocentric kinetic integrals vanish. Using this 
approximation the molecular binding energy can be rewritten in the form 

*=\^ЩЕ?.Г (12) 

where 

ЕТ:,П=2РЦТ, аз) 
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are the'increments of the molecular binding energy which will be called the 
particular binding energies. Thus the maximum value of the following functional 

G мт м т 

a^-SSS^WiO (i4) 

may be regarded as a generalized criterion for determination of HAOs (Ai"r are 
Lagrangian multipliers). Eqn (14) represents the maximization of molecular 
binding energy under the constraint condition that the orbitals are kept 
orthonormal. 

For normalized Slater-type AOs in real form 

X„./,. = (2?) n + 1 / 2 [(2n)!]- 1 / V- 1 e-*Z,. m (0, Ф) (15) 

(Zi,m(ů, ф) are the normalized spherical harmonics) the following equation is valid 
[i6] 

Xn.l, Xn', ',m'/~ ^ \ VpXn,l,m I Xn', ',m')~ 

= -\ť{(Xn.i,m\Xn: •,т')-2(2п)1/2(2п-1у1/2(хп-г,1,т\Хп, :„•) + 

^4(n^l)(n-l-l)[2n(2n-l)(2n-2)(2n-3)]-l/2(xn-2,i,m\Xn', ..«•>} 
(16) 

Combining eqns (4), (6), (12), (13), and (16) the condition 

ô^ = 0 (17) 

corresponds to the maximum of weighted sum of overlap integrals and thus the 
maximum overlap criterion for choice of HAOs is derived. 

In a molecule any orbital on a given atom can be expanded in terms of the 
complete orthogonal set of one-centre functions of the other atom of the molecule 

<vn = s" <*riiŕ?><v:i = 2 " s " W l (m 

Then 

= | (S" sD-Trr+s" sr;"C) (Í 9) 
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Approximation 2 

Two-centre kinetic integrals in a minimum (or in the valence) basis set are 
approximated as follows 

T^iTu + T^Si (20) 

which is the well-known Mulliken approximation of two-centre one-electron 
integrals [17]. According to this approximation the molecular binding energy can 
be rewritten in the form 

G мт м п 

where 

КТ)п = Р«(Ти+Т^ (22) 

Expression (21) represents the weighted sum of overlap integrals between HAOs; 
particular binding energies E7,)n are directly proportional to the overlap integrals of 
HAOs 

ETjn=KTjnST:in (23) 

Approximation 3 

Elements KT.}" can be regarded as numerical parameters transferable from one 
molecule to another, which depend only on the quality of the bonded atomic pair. 
These parameters may be evaluated in a semiempirical way. 

Let us deal now with directional properties of HAOs. It is well known that 
HAOs may be chosen in such a way that their directional vectors with directions of 
"covalent bonds" are parallel. For example, in the methane molecule using group 
theory we obtain HAOs on carbon atom the directional vectors of which are 
situated on С—H bonds. However, many examples are known in which real HAOs 
oriented in the bond directions do not exist (e.g. in the cyclopropane molecule), 
and it is necessary to introduce some deviation from the bond direction [18, 19]. 
The directional nature of HAOs enables us to construct strictly localized molecular 
orbitals which describe two-centre "covalent bonds" Therefore we define the 
"optimum" hybrid atomic orbitals as those: 

(i) which maximize the total molecular binding energy according to eqn (21) 
under the condition of orthonormality of HAOs on each centre; 

(ii) which have the minimum deviation from bond directions. 
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In order to secure the second condition we must define some "bonding situation" 
in a molecule, e.g. we must describe "covalent bonds" in terms of HAOs' pairs. Let 
us have independent numbering of: 

(i) atoms (index m e (I, G ) ) ; 
(ii) HAOs on the given atom (index / e ( l , M m ) ) ; 

(Hi) "covalent bonds" (1, 2, . . .) . 
We define a discrete topological function f(m, i) on the set of indices {w, i}, 

the value of which is equal to the bond number. The topological function f(m, /) 
fully describes the molecular bonding model: the nonzero topological factor 
(1 — <5m,„) <5f(m.i),f(n,/) selects from all indices {m, /} and {n, /} only pairs of HAOs 
гр7 and ip" which are oriented in the direction of the same bond (Fig. 1). Lone lobes 
("nonbonding HAO") may be considered as "nonconnected bonds" which do not 
give a contribution to the molecular binding energy. For lone lobe грг we have 

2 2(1-*«.»)*f(m.r).f(-./) = 0 (24) 

Fig. 1. Numbering system for description of molecular bonding model. 

With respect to both conditions mentioned for optimum HAOs, these may be 
chosen so as to maximize the following expression 

G мт мп 

e = ö S 2 "2jKtina^kali(xTZ\x'!)(l-č>m.n) оНт,п,Чп,п (25) 
ť m, n i, k j , l V ' 

Eqn (25) corresponds to the weighted sum of overlap integrals between "bonding" 
HAOs and was used as a criterion for selection of HAOS in the EMOA method. 
A simple matrix formula for simultaneous optimization of "bonding" HAOs on all 
centres of the molecule has been derived in [13]. "Nonbonding" HAOs may be 
obtained as a complement to the orthonormal set of HAOs on each centre. 
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It is possible to show [20] that the molecular binding energy expressed by eqn 
(25) can be regarded as a scalar invariant of a second-rank tensor which is 
constructed through the Kronecker products of all vector spaces Wm where 
HAOs = !//[" eW m . However, a scalar invariant of any tensor does not depend on 
the use of basic functions. Thus the molecular binding energy should be invariant 
using various basis sets of atomic orbitals. Strictly speaking, it is true only in 
complete Hilbert space. The validity of this assumption must be verified by 
numerical calculations for various valence basis sets. 

Results and discussion 

In this paper the maximum overlap criterion for the choice of optimum hybrid 
atomic orbitals has been theoretically studied. Using the quantum-mechanical 
virial theorem the molecular binding energy has been expressed as a function of 
kinetic integrals in the HAOs' basis. As the kinetic integrals for Slater-type AOs 
through overlap integrals can be expressed, the generalized criterion of the 
maximum overlap can be obtained by maximization of total binding energy. Due to 
some approximations the molecular binding energy has been expressed as 
a weighted sum of overlap integrals. Weighted parameters KT.)n which secure the 
reproduction of molecular binding energy depend only on monocentric kinetic 
integrals and bond-order matrix elements PT,)n 

Localized "covalent bonds" can be described with strictly localized molecular 
orbitals (SLMOs) which are defined as follows 

tp^biipr + bjV? (26) 

where coefficients bt and fe,- expand the /i-th SLMO into pair of HAOs with 
maximum overlap. Expanding coefficients are constrained by the following nor­
malization condition 

b2
i+b]^2bibiS?:i

n=l (27) 

In this case the bond-order matrix elements are 

PTjn = wIAbtbl (28) 

(w^ is the SLMO's occupation number). It is interesting to examine the functional 
dependence of (bibf) vs. bi for fixed overlap integrals S?,)n. In Fig. 2 we can see that 
a change in bond polarity does not affect the bond orders significantly. Therefore, it 
is reasonable to assume that parameters KT,)n for a given atomic pair are 
transferable from one molecule to another. 

The ideas presented in the previous part of this article have been numerically 
tested on the series of halomethanes. During the calculation we have used the 
experimental geometries of the molecules. The invariance of the molecular binding 
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Fig. 2. Functional dependence of product 
of SLMO's expanding coefficients (6Д) 

vs. b, for fixed overlap integrals S„ via 
eqn (28). 

1. S„ = 0.0; 2. S„ = 0.3; 3. S„ = 0.5; 
4. 5« =0.7; 5. 5,, = 1.0. 

ь,Л 
0.6 

0.A 

0.2 

0.0 

i i i i 

* 

<Г 1 I I 1 

v\ V 

0.0 0.2 0.A 0.6 0.8 

energy was tested using six different basis sets of AOs. Parameters KT,}n for bonds 
С—X (X = H, F, CI, Br) were determined in order to reproduce the molecular 
binding energies of CX4 molecules (Table 1). These parameters were used in the 
EMOA method for calculations of optimum HAOs, particular binding energies 
and total binding energy of CH3X, CH 2X 2, CHX3 (X = F, CI, Br) types of molecu­
les. The results are presented in Tables 2 and 3. 

Particular binding energies (Table 2) are in a good agreement with empirical 
values [21]: £ „ ' " = 4 1 4 - ^ 3 9 , Ea ' F = 4 4 3 - ^ 8 5 , E a

c , a = 310—326, and E„'B r = 
= 259—268 (in kJ mol"1). In the series of the molecules CH3X, CH2X2, and CHX3 

the particular binding energies for С—H as well as for С—X bonds increase. This is 
in a good harmony with the established thermal stability of tri-halomethanes 
relative to mono-halome thanes. Total molecular binding energies (Table 3) for all 
six bases are in a good agreement with experiments: deviations from experimental 
data are less than 2%. 

Table 1 

Parameters К by different valence bases [kJ mol !] 

Bond 

C—H 
C—F 
С—CI 
С—Br 

а 

604.617 
852.913 
549.229 

— 

b 

592.266 
825.712 
566.430 
496.310 

Valence set 

с 

547.861 
718.589 
465.922 
438.533 

d 

569.928 
762.325 
530.594 
451.705 

e 

575.559 
791.747 
536.887 

— 

f 

575.329 
796.634 
540.443 
470.838 

a) Slater [24]; b) single zeta SCF [25]; c) Bums [26]; d) Froese [27, 28]; e) double zetas SCF [29]; 
/) poly zetas SCF [29]. 
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Table 2 

Particular binding energies [kJ mol 

Molecul« 

CH 3 F 

CH 2 F 2 

CHF 3 

CH3CI 

CH2C12 

сна3 

СНзВг 

СН2Вг2 

СНВгз 

г Bond 

C—H 

C—F 
C—H 
C—F 

C—H 

C—F 
C—H 

с—а 
С—H 

С—CI 
С—H 

с—а 
с—н 
С—Вг 

с—H 
С—Вг 

с—H 
С—Вг 

Used 

Distance 

[ÍO"10 m] 

1.097 
1.3852 
1.093 
1.360 
1.098 
1.332 
1.0959 
1.78123 
1.082 
1.772 
1.073 
1.762 
1.0954 
1.9388 
1.093 
1.93 
1.068 
1.93 

geometry 

Angle 
[degree] 

FCH 

HCH 
FCF 

FCH 

C1CH 

HCH 

C1CC1 
C1CH 

BrCH 

BrCBr 
HCH 
BrCH 

108.9 

109.46 
108.5 
110.14 

108.4 

109.5 
112.0 
108.2 

107.23 

112.0 
109.5 
108.11 

а 

418.8 

443.9 
424.3 

461.5 

428.0 
480.7 
419.2 
311.7 

427.2 

317.6 
434.3 
323.8 

— 
— 
— 
— 
— 
— 

b 

418.8 
446.4 

423.8 
463.2 

427.2 
481.2 

419.7 
312.1 

427.2 

318.0 
434.7 
323.8 
420.5 
261.1 

425.1 
266.9 
438.9 
269.4 

Valence set* 

с 

417.6 
457.7 

420.9 
470.3 

423.0 
483.3 

423.0 

315.9 
423.4 

320.5 
427.6 
324.3 
419.2 

262.8 

422.6 
267.8 

432.6 
269.4 

d 

418.0 
453.1 
422.2 
467.4 

424.7 
482.4 
424.7 
313.4 

425.5 
318.8 

431.8 
324.3 
419.7 
261.9 

423.8 
267.4 

435.6 
269.4 

e 

417.1 
457.7 

420.1 
470.3 

421.3 
483.3 
421.3 
314.6 
424.3 

319.7 
429.3 
324.3 

— 
— 
— 
— 
— 
— 

/ 

418.0 
453.1 
422.2 

467.4 
424.7 
482.4 

424.7 
313.4 

425.5 
318.8 
431.8 

323.8 
419.7 

261.9 

423.8 
267.4 

435.6 
269.4 

* References see in Table 1. 

Table 3 

Molecular binding energies [kJ mol 

Molecule 

CH 3 F 
CH 2 F 2 

CHF 3 

CH3CI 

CH2C12 

CHCI3 
СНзВг 
CH 2Br 2 

СНВгз 

Exptl.* 

1719.6 
1761.9 
1867.7 

1576.1 
1488.2 

1397.0 
1518.4 

1378.6 
1243.1 

а 

1700.8 
1771.9 
1870.2 
1569.8 
1489.9 

1405.8 

— 
— 
— 

b 

1702.5 
1773.6 
1870.7 
1570.3 
1490.3 
1406.2 

1522.1 

1384.5 
1247.3 

Valence 

с 

1710.4 
1782.4 
1873.2 
1570.3 

1487.0 
1401.2 

1520.5 
1380.7 
1241.4 

set** 

d 

1707.1 

1778.6 
1871.9 
1570.3 
1489.1 

1404.2 
1521.3 
1382.4 
1244.3 

e 

1710.4 
1780.7 
1871.5 
1569.8 
1487.4 

1402.1 

— 
— 
— 

/ 

1708.7 
1780.3 

1871.5 
1569.4 

1487.0 

1401.6 
1518.8 

1378.6 
1240.1 

* Ref. [30]. 
** References see in Table 1. 
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The obtained results demonstrate that the EMOA method is useful for construc­

tion of the optimum HAOs in polar molecules. From this point of view we doubt 

the statement of Randič and Maksič [22, 23] that the maximum overlap criterion 
should be used only for nonpolar hydrocarbons. This method has been applied on 
the large number of molecules (of the various types) which are built from H to Br 
atoms, including first transition metal row atoms. 
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