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The relationship between the overall rate constant and the rate constants of
particular reaction steps calculated by the method of quasistationary concen-
trations has been compared with the results obtained by integrating the systems
of differential equations of chemical kinetics and with the consequences
ensuing from the Viete theorem on roots of an equation. It has been
established that the method of quasistationary concentrations is to be regarded
as an approximate method for calculating the least (as concerns absolute value)
root of the characteristic equation which is valid both for the linear and cyclic
sequence of reaction steps.

3aBucuMocTb OGILIEH KOHCTAHTBI CKOPOCTH OT KOHCTAHT OTHAENbHBIX CTYyMeE-
Heil peaklMH, PACCYUTaHHAs MO0 METOAY KBA3WUCTALMOHAPHbIX KOHLEHTPalUH,
Obl1a CpaBHEHa C pe3yJbTaTaMHM MOJYYE€HHbIMM WUHTETDUPOBAaHHEM CHCTEM
nucddepeHUMANbHBIX YPAaBHEHUH XHMHUYECKOH KUHETHKHM M MOCJIENCTBUAMHU
BBITEKAIOIMMH U3 JIeMMbl BbeTa 0 KOpHsX ypaBHeHus. Bputo HaipeHo, yTo
MeTOo[ KBa3UCTALMOHAPHBIX KOHUEHTPALMIi HY>HO MOHMMATh KaK NPHOIMKEH-
HBI MeTON pacyeTa HaiMeHbiero (Mo aGCONIOTHOMY 3HAYEHHMIO) KOPHSA
XapaKTEPUCTMYECKOTO YPaBHEHHs, KOTOPOE OCTAETCH B CHJIE KaK IS JIMHEH-
HOM, TaK ¥ LMKJINYECKOW MOCIENOBATENbHOCTH CTYNEHEH peakuMH.

The method of quasistationary concentrations was introduced into literature by
Bodenstein [1, 2]. The conditions of its correct use for radical (3, 4] and ionic
reactions involving covalent bonds [5] are known. This paper is concerned with the
mathematical essence of this method and the possibilities of its extension to reactions
the particular reaction steps of which constitute cycles. The comparison of results of
the method of quasistationary concentrations with the results obtained by means of
the Viéte theorem on roots of an equation was used as a method for this study.

Results and discussion

By reason of mathematical formalism, it is useful to classify the reaction systems
according to the number of intermediates.

172 Chem. zvesti 33 (2) 172—179 (1979)



METHOD OF QUASISTATIONARY CONCENTRATIONS

1. System with one intermediate

Let us consider a system in which X, Y, and Z are the reactants, x, y, and z their
instantaneous concentrations, and a, b, c¢ the rate constants. The reaction proceeds
from starting substances through one intermediate to reaction products according
to the following scheme

X=Y-Z (1)
b
We assume that all reaction steps obey the law of the first-order reactions.
A nucleophilic addition taking place in the presence of excess nucleophilic agent
may serve as a practical example of eqn (1).
The reaction system may be described by known kinetic differential eqns (2—<)
the solution of which gives characteristic eqn (5). We shall denote its roots by 4,
and A,

ety @)
_—dy=(b+c)y—ax 3)
dr
%=cz “4)
A’+al+B=0 (&))
where
a=(a+b+c); B=ac 6)

For instantaneous concentrations of reactants X and Y eqns (7) and (8) are valid
[6]. P, and Q are integration constants found from boundary conditions

= =P[exp (L)) +Pifexp (Aa)) ?)

;cx;= — Q [exp (A:1)]+ Q [exp (A.1)] C)

For t =0, x =x,, y =0, and z =0, it holds

_a+ti,
Az—')‘.] ’

a+i, o=-—12

P —
! A’Z—Al ’ AZ_A'I‘ (9)

P2=

Dividing eqn (8) by eqn (7), we obtain the ratio y/x. If we assume the time change
of y in eqn (3) to be equal to zero we obtain eqn (10) and by combining eqns (10)
and (3), we obtain relation (11) for the ratio y/x
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—dy_

T_O (10)
y__a
x (b+c) (11)

Eqns (10) and (11) are valid for the maximum concentration of intermediate. The
method of quasistationary concentrations extends their validity for the time range
t =0—t = o0 and thus it deviates from an exact solution. Supposing a quasistatio-
nary concentration of intermediate Y, we obtain eqn (12) from eqns (3) and (10).
Thus the relationship between real and quasistationary concentrations is deter-
mined in conformity with [7] by eqn (13) where ¢ is the deviation of quasistatio-
nary concentration from real concentration

() -5 (12)
y=y*(1+e¢) (13)

Eqn (12) approximates the better to the real ratio of concentrations y/x within the
whole time range, the smaller is € [7]. The ratio (y/x)/(y/x)* approaches to one the
more, the smaller is a in comparison with (b +c¢) [8]

a<(b+c) (14)

The deviations of the method of quasistationary concentrations from the exact
solution were frequently studied in literature [7—10] and therefore we shall discuss
them only in the necessary extent. Now, we shall pay attention to the revelation
what is the relation between the solution obtained by the method of quasistationary
concentrations and the roots of characteristic eqn (5) or integration constants P;
and Q in eqns (7) and (8). By solving eqn (5), we obtain

_—(atb+c)xV(a+b+c)—4dac
B 2

Az (15)

Because of condition (14), we may write inequality (16) involving inequality (17).
As the roots A, are negative, inequality (18) is also valid

(a+b+c)>4ac (16)
A>A, (17)
4] <A (18)

According to the Viéte theorem, the roots of characteristic eqn (5) obey eqn (19),
but because of inequality (18), eqn (20) is also approximately valid
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—a=A+As; B=AA, (19)
—a=A, (20)

Expression (21) follows from eqns (19) and (20)
—A=pla 1)

On inserting inequalities (17) and (14) into expressions (9), it is evident that P,
approximates to one and P, and Q to zero with increasing difference of the roots of
characteristic eqn (5). Therefore, by maintaining inequalities (17) and (14) and
respecting eqn (21), eqn (7) converts into form (22) and the right side of eqn (8) is
approximately equal to zero. Simultaneously, the mathematical formalism of the
studied reaction changes from complex reaction to isolated reaction

x —act
xo_{exP [a +b +c]} (22)
The method of quasistationary concentrations gives expression (23) if eqns (12)
and (2) are combined
x\* —act
()70) _{CXP[b +c]} (=)

According to this paper, eqn (22) must approximate to eqn (23) the better, the
smaller is a with respect to (b + ¢), as stated by expression (14). The agreement of
the results of this study with [7, 8] ensues from these relationships.

2. System with two intermediates

Let us have a system in which a reaction proceeds from reactant X to reaction
product W according to scheme (24)

e
X

Nz O\ (24)

g v

Let us assume that all reaction steps obey the law of the first-order reactions. The
reaction system can be described by kinetic differential eqns (25—28)

—T(tix-=(a+e)x—by—fz (25)
5 —(bHc+g)y—ax—dz (26)
—dz
T=(d+f+h)z—ex—cy 27)

Chem. zvesti 33 (2) 172—179 (1979) . 175



J.MOLLIN

dw
oot hz (28)
This system of differential equations is solvable [11] and leads to characteristic eqn

(29)

AM+arl’>+Br+y=0 (29)
where
a=a+b+c+d+e+f+g+h (30)
B=a(c+d+f+g+h)+b(d+e+f+h)+
+c(e+f+h)+d(e+g)+e(g+h)+g(f+h) 31
y=a(ch+dg +fg +gh)+e(bh +ch+dg+gh) (32)

The cubic eqn (29) is generally solvable and gives three roots A,, A,, and A,. For
instantaneous values of x, y, and z, eqns (33—35) are valid. The values of
integration constants P;, Q;, R; may be found from initial conditions. If it holds
t=0, x=x,, y=0, and z =0, eqn (36) ensues from eqns (33—359)

xi = P,[exp (A:t)] + Pa[exp (Ax1)] + Ps[exp (Ast)] (33)
£ =Qilexp (1] + Qalexp (Aa1)] + Qsfexp (1)) (34)
Z=Rifexp (1it)] + Rafexp (A:0)] + Rlexp (A1) (35)
P,+P,+P;=1; Q;+Q,+Q5=0; R,+R,+R;=0 (36)

At given rate constants a—#h, the calculation of 4;, P;, Q;, R; makes great demands
on tabulated values of cosinus of the angle 89—90°. Therefore for demonstrating
the system of eqns (33—35), it was put e = f =0 and the calculation was performed
by means of usual logarithmic tables [12]. The calculated results are summarized in
Table 1. Except the tabular error, the calculated values of P;, Q;, R, fulfil eqns (36).
It is obvious from Table 1 that inequalities (38) and (39) are valid provided
inequality (37) holds. Simultaneously, P, approaches the value of one and other
integration constants approach zero. Therefore, eqn (33) may be approximated by
expression (40) which is formally identical with (22)

a<b=c=d=g=h (37)
MDA, A>A, (38)
|A:] <2 |A:] <75 (39)
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Table 1
Constants of eqns (33—35) as functions of the rate constants of particular reaction steps ata =1x 10~
ande=f=0
b=c=d=g=h 1x10°° 1x10™* 1x107" 1x107?
-A, x10° 4.6791 5.574 5.99 6.0
-4, 1.6527 x 10~ 1.3916 x 10~* 1.3840x 107 1.3822x107?
=2, 3.8794x107° 3.6427x107* 3.6200x 107 3.6182x107?
P, 0.71225 0.95289 0.99800 0.99980
P, 0.20075 0.03888 0.00145 0.00014
P, 0.08592 0.00622 0.00062 0.00005
Q, 0.37903 0.04037 0.00400 0.00040
-Q, 0.13103 0.01945 0.00200 0.00020
-Q, 0.24740 0.02046 0.00200 0.00020
R, 0.24739 0.02087 0.00201 0.00020
-R, 0.37728 0.03325 0.00325 0.00032
R, 0.13164 0.01238 0.00124 0.00012
X
x,~ lexp (L) (40)

Thus from the view-point of kinetic formalism, the complex reaction turns again
into isolated reaction of the first order.

If inequality (41) holds in reaction system (24), inequalities (38) and (39) must
be simultaneously valid

a=e<b=c=d=f=g=h 41)
According to the Viéte theorem, it holds for the roots of eqn (29)

—a =}-| +A2+A3
B=AA+A A+ 454,
—Y=AAA;s

If inequalities (39) are fulfilled, expressions (42—<45) are approximately valid.
From eqns (43) and (44), we obtain eqn (45). If inequalities (38) and (39) are
fulfilled, eqn (33) assumes the form of eqn (46)

—a=A+4, (42)
B=AA, (43)
—y=Ahahs (44)
e %’- (45)
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= fonl(5)]

If we insert from eqns (31) and (32) into eqn (45), we find eqn (47) and by using
the method of quasistationary concentrations we obtain eqn (48)

= a(ch +dg +fg + gh)+e(bh +ch +dg + gh)
"“a(c+d+frg+h)+b(d+e+f+h)tc(e+f+h)+d(e+g)+e(g+h)+g(f+h)

(47)

k _a(ch+dg +fg +gh)+e(bh+ch+dg+gh)
Bod ™ (b+g)d+f+h)+c(f+h)

(48)

The numerators of expressions (47) and (48) are equal while the denominators are
different only in the terms which contain a and e. Provided inequality (41) is
fulfilled, the difference between the denominators of both equations is small and
thus eqn (49) is approximately valid, k.4 being the rate constant found by the
method of quasistationary concentrations

kBod = _11 (49)

From this circumstance, it follows that the mathematical formalism of the
method of quasistationary concentrations of all intermediates is to be regarded as
an approximate method of calculation of the least (as to the absolute value) root of
characteristic equation of the corresponding system of differential equations. By
the use of this root and boundary conditions, the value of integration constant is to
be found by the method of quasistationary concentrations. The validity of this
deduction has been verified for reaction pathways (1) and (24). It may be expected
that eqns (40) and (49) are always valid if the process involves a system of the
first-order reactions. A comparison of the results obtained on the basis of the Viete
theorem with those obtained by the method of quasistationary concentrations gives
evidence that this method provides equally accurate results for the systems of linear
as well as cyclic reaction steps. Thus it has been demonstrated that the application
of the mathematical formalism of the method of quasistationary concentrations to
complex reactions the particular reactions of which constitute cycles is equally
correct as its application to complex reactions the particular reactions of which
proceed in a linear sequence of reaction steps. The use of the method of
quasistationary concentrations for reactions of the first order is correct only if the
concentration of the starting substance as a function of time fulfils eqn (40) within
the scope of experimental errors. This conclusion is in agreement with [S]. As
a matter of fact, the dependence of the rate constants of particular reaction steps on
conditions of the experiment (pH, composition of solvent, etc.) may be different.
Therefore, the dependence of A, on conditions of the experiment may be used as
one of the proofs of the complexity of reaction process.
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