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New variant of derivation of the generalized Le Chatelier—Shreder equation 
which describes the course of liquidus in simple eutectic systems is presented. 
The derivation is based on the conditions valid for phase equilibria, i.e. 
ö,,.eq=G<

0s and d(5:4eq = dG?s at P, T = const. 
Furthermore, it is taken into account that the partial molar Gibbs energy of 

the given component in the case of saturated solution, G\teq, depends formally 
both on composition and temperature, but in fact for the case of phase 
equilibrium, these parameters are not mutually independent. 

Приведен новый вариант вывода обобщенного уравнения Ле Шателье-
Шредера, которое описывает ход ликвидуса в простых эвтектических 
системах. Вывод обоснован на условиях фазового равновесия, т.е. G!>eq = 
= G°-S и döi.eq = dG?1 при P, T = const. 

Свыше этого, учитывается обстоятельство, что парциальная мольная 
энергия Гиббса данного компонента в насыщенном растворе, б Ц , зави­
сит формально от состава и температуры, но для данного случая фазового 
равновесия оба эти параметры взаимосвязаны. 

For the quantitative description of the course of liquidus curve in the systems 
having no solid solutions the generalized Le Chatelier—Shreder equation is of the 
primary importance. However, in deducing this equation [1—3] it was not taken 
into account that temperature and composition are not independent variables. The 
aim of this work is to present an exact treatment of this problem. 

Thermodynamic condition for a phase equilibrium of the type B ' ^ B 0 s 

Let us consider a simple eutectic system A—В (Fig. 1). For the equilibrium 
B ' ^ B 0 s at temperature TY and concentration of the substance В equal to xY it 
holds (assuming that the pressure is constant) that the partial molar Gibbs energies 
of coexisting phases are equal 
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Fig. L Isobaric phase diagram of a simple 
eutectic system A—B. 

Phase equilibrium B'^B0,S at temperature T 

CjB ,eq— C J B (1) 

It holds that Gl
B^ = f(T, xB); GB's = f(T). 

Now let us change the temperature Tx by d T and the concentration JCI by djc. 
These changes will influence also the increase in partial molar Gibbs energies by 
dGe, resp. dGB

s. If under these new conditions (T2 = r 1 +dT, x2 = xl+dx) the 
equilibrium B ' ^ B 0 s is reached again it holds 

and further 
CrB,eq— С/в 

2GB,eq = l GB,eq + d G B 

W ^ G ^ + dGS5 

Combining and comparing eqns (1—4) we obtain 

d G ' = d G B

s 

(2) 

(3) 

(4) 

(5) 

Г - Г 

Fig. 2. Graphical illustration of the intersection of two surfaces corresponding to Gibbs functions 
G?-s = f(r)andG! = f(7\;t). 

It holds G0rs^i(x). 
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The validity of eqn (5) can be demonstrated graphically (Fig. 2). The function 
G B (T, JCB) is represented by the surface RMQ, the function G0,*(T) by the surface 
UMQ. Because G ° s does not depend on x it holds that the surface UMQ can be 
constructed by shifting abscissa MU in such a way that the point U follows the line 
UQ and the abscissa MU is all the time parallel to the base ZNT. The plane ZNT 
will serve as a base for measuring the magnitude of Gibbs functions. The surface 

G' = f(T, x) intersects the surface G° s = f(T) in the line MQ. If eqn (1) holds at 

(Tu xx) and eqn (2) at (T2, x2) then the elementary vectors d T and dx are not 

independent but their relative lengths obey the condition that the sum of the 

vectors must lay on the line NT4, which is an orthogonal projection of the line MQ 

in the plane base ZNT. 

However, in this case it must hold d G B = dG B

, s . 

Derivation of the Le Chatelier—Shreder equation on the basis of relation 

In * U = f [ Т , * ( Т ) ] 

By deducing the equation in question from the differential form of the function 

In a\ = f(T, Xi) it is assumed that the activity of the i-th component in a binary 

liquid solution, a\, is (at constant pressure P) a function of absolute temperature T 

and concentration *, of this substance in solution. 

This assumption is generally correct. However, in those cases when we deal with 

a liquid solution saturated with the i-th component (i.e. the solution is in 

thermodynamic equilibrium with the pure solid component /) the corresponding 

binary system "/—j" possesses only one degree of freedom as it follows from Gibbs 

phase rule 

v = * - / + l = 2 - 2 + l 

Two coexisting phases are the pure solid substance i and the liquid solution 

saturated with this substance. Therefore, only one of the parameters T, x is 

independent. 

At first, let us consider the case when at solid—liquid equilibrium the indepen­

dent variable is absolute temperature T and thus x{ =f (T) . 

In this case a\tCq = F[T, xt] = F[T, xs(T)]9 or In а\щСЦ = f[T, JC,(T)]. For the differen­

tial of a function of multiple variable of the given type it holds 

d , n o U . ( ^ ) _ d r + ( ^ ) j d T (6) 

We need to determine both partial derivatives in this equation. (In the next the 
index " / " will be omitted to simplify the relations.) In order to determine the 
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relation (Э In а[сц/дТ)х we shall use for activity the identity 

6l = G0l + RT\nal (P = const) (7) 

As a standard state, the state of pure liquid (undercooled liquid) substance at the 
temperature of the system will be chosen. Considering that we deal with the activity 
of the substance in a liquid phase which is saturated with this substance, eqn (7) 
will be written in the following way 

Then for the searched partial derivative it follows 

^lnflLA _ 1 Э [-(G'-G" 1 ), n 

dT /, R эт[ (9) 
T 

Now it is necessary to rearrange the right side of eqn (9). Generally it holds 

Mil—?- m 

For 61, = f(T, д:), G ( ) J = f(T) (P = const) we get from eqn (10) 

' PrX 

and 
Э /G°A H ° J 

З Г V Г /p г 

Then from eqns (2 Í ) and (12) it follows 

Э [-(G'-G 0 1 )« 

3TL T T 2 

(Í2) 

(13) 

After introducing from eqn (13) into eqn (9) we obtain 

/Э In а1Л _ _1_ ( H ' - H 0 ' 1 ) . ^ 

I ar /x R T2 К1Ч) 

Thus we have determined one of the partial derivatives in eqn (6). For 
determining the second partial derivative in this equation, i.e. the expression 
(Э In fllq/9jt)T, we shall utilize the condition for the phase equilibrium of this type 
described by eqns (1) and (5). 

It holds (P = const) 

ои=«[г,*(Г)] 
G 0 s = f(T) 
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and therefore 

d G " - = ( ^ ) d T (J6) 

With regard to eqn (5) it holds 

For P = const, it generally holds 

dG=-SdT 

from which it follows for our case 

dGL,= - Š L , d r 

d G O s = - 5 0 s d T 
and thus 

Combining eqns (17—í 9) we obtain 

- ( Š ' ^ d T + j ^ 3 ) ^ d T = - ( S 0 s ) d r (20) 

and after rearranging 

V Э* j T ^ Ь h ^ U 1 dx dT 
or 

From the definition relation (7) we get for the case of phase equilibrium in 
question the equality 

(fi=-(a-ta <*> 
After introducing from eqn (22) into eqn (21) we obtain 
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/Э In а]Л ., 0 ÔT 
R T \ Эх ) T - ( S ~ S )x^dx 

or 

(^44 ^ f ^ £ <-> 
This relation can be further treated. It holds by definition that dH = V dP + T dS 
and therefore at the constant pressure dH=T dS. For an infinitesimal change of 
the amount of the /-th substance in solution which is saturated with this substance 
at temperature T it holds 

(dHI)e4 = T(dŠ ,)e | 

For 1 mole of the /-th substance in the saturated solution having the same 
composition and the same temperature it holds 

(H%.e4 = T(S%.cq (24) 

where (H'), (Š1) are partial molar functions. Similarly, for 1 mole of the pure /-th 
solid substance at the same temperature T 

^Í0••=ГS0•• (25) 

From a comparison of eqn (24) with eqn (25) it follows that (Hl — H"s)x^ = 
= T(Š ' -S 0%. e qor 

(Š'-S°%eq = ̂ | P ^ (26) 

By introducing from eqn (26) into eqn (23) we obtain 

Э In а'еЛ = J _ (ff-H 0 - 1 ),,«, d T 
Эх j , R T2 dx 

(27) 

The relation (27) is the searched partial derivative in eqn (6). 
The expression (Э In a[q/3x)T can be determined also in another way. From the 

definition relations G = H- TS and dG = V dP - S dT it follows that (9G/3T) P 

= - S = G/T-H/T.lf these relationships are applied to our problem it holds 

(3Giq/3T) x = G[IT-H[IT [P] (28) 

(3G 0 '73T)p = G 0 ' 7 T - H ° ' s / T (29) 

After substituting from eqns (28) and (29) into eqn (17) we obtain 

and because Gl

x = G0s 

2 0 a , e m - ^erá «И (1) 15—22 (1979) 
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With respect to eqn (22) it holds 

RT(^^dTjA^f%dT [P,eq] (32) 

and therefore 

(Э\па[Л (Íŕ-H»<%eq ÚT 
{ Эх ) T ~ RT áx v n KJJ) 

which is identical with the relationship (27). Now we can introduce from eqns (14) 
and (27) into eqn (6) 

+ 

or 

_1_ (ff-H^%,eq d ľ d í 
R T dx dT 

d In fliq = * —$ — d T 

The quantities H°tl and Я° s are functions of T only. Therefore it holds 

rr(),l I-J^'S д rrO.I/O.s 

dlnaU= Д 7 Г d T = ^ ^ d T (34) 

From the formal point of view the result is the same as when we considered the 
parameters T and x as mutually independent. In the present treatment we 
considered T to be the independent parameter. In principle it would be possible to 
carry out the derivation in an opposite way, i.e. to choose x as independent 
variable. However, this is not practical because the thermodynamic functions 
related to pure component (G° •', G 0 s , H 0 J , H°s) do not depend on x. 

The presented proceeding is a new variant of derivation of the generalized Le 
Chatelier—Shreder equation. 
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