Exact derivation of the Le Chatelier—Shreder equation
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New variant of derivation of the generalized Le Chatelier—Shreder equation
which describes the course of liquidus in simple eutectic systems is presented.
The derivation is based on the conditions valid for phase equilibria, i.e.
G\ .=G and dG! _,=dG?* at P, T = const.

Furthermore, it is taken into account that the partial molar Gibbs energy of
the given component in the case of saturated solution, G, depends formally
both on composition and temperature, but in fact for the case of phase
equilibrium, these parameters are not mutually independent.

IMpuBeneH HOBbIA BapuaHT BbiBoAa 0606weHHoro ypasHeHus Jle lllarense—
lllpenepa, KOTOpPOE OMMCBLIBAET XON JIMKBHAYCa B MPOCTBIX 3BTEKTHYECKHX
cucremax. BbiBoj 060CHOBaH Ha ycloBusiX ¢a3oBoro pasHoBecus, T.¢. G' =
=G?% u dG| ,=dG?* npu P, T =const.

Cablllie 3TOro, YYUTbIBaeTCs OOGCTOSATENBCTBO, YTO MapLMaibHasi MOJIbHas

JQHEprusa I'n66ca NaHHOTO KOMITOHEHTA B HACBLILLEHHOM pacTBoOpeE, G:q, 3aBU-

cuT POpManbHO OT COCTaBa U TEMIIEPATYPBI, HO [N JAaHHOTO ciyyasi ha3oBoro
paBHOBecHs 00a 3TH MapaMeTpbl B3aMMOCBSA3aHbI.

For the quantitative description of the course of liquidus curve in the systems
having no solid solutions the generalized Le Chatelier—Shreder equation is of the
primary importance. However, in deducing this equation [1—3] it was not taken
into account that temperature and composition are not independent variables. The
aim of this work is to present an exact treatment of this problem.

Thermodynamic condition for a phase equilibrium of the type B'=B"*

Let us consider a simple eutectic system A—B (Fig. 1). For the equilibrium
B'=B°* at temperature T, and concentration of the substance B equal to x, it
holds (assuming that the pressure is constant) that the partial molar Gibbs energies
of coexisting phases are equal
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Fig. 1. Isobaric phase diagram of a simple
eutectic system A—B.
A B Phase equilibrium B'=B"* at temperature T

B.eq=lG%s (1)

It holds that Gy .o =f(T, xp); Go*=f(T).

Now let us change the temperature T, by dT and the concentration x, by dx.
These changes will influence also the increase in partial molar Gibbs energies by
dG5, resp. dGY®. If under these new conditions (T,= T, +dT, x,=x, +dx) the
equilibrium B'==B"* is reached again it holds

*Gha="GY’ @

and further
ZG'B‘.,,=‘ 5 ',,_eq+dG'., 3)
Gy ="Gy +dGy* 4)

Combining and comparing eqns (1—<4) we obtain

dGL=dGy* (5)

Fig. 2. Graphical illustration of the intersection of two surfaces corresponding to Gibbs functions
G**=f(T)and G\={(T, x).
It holds G¢* #f(x).
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The validity of eqn (5) can be demonstrated graphically (Fig. 2). The function
Gi(T, xp) is represented by the surface RMQ, the function G™*(T) by the surface
UMQ. Because G** does not depend on x it holds that the surface UMQ can be
constructed by shifting abscissa MU in such a way that the point U follows the line
UQ and the abscissa MU is all the time parallel to the base ZNT. The plane ZNT
will serve as a base for measuring the magnitude of Gibbs functions. The surface

G'={(T, x) intersects the surface G**={(T) in the line l\'fQ. If eqn (1) holds at

(T, x,) and eqn (2) at (T3, x,) then the elementary vectors dT and dx are not
independent but their relative lengths obey the condition that the sum of the

vectors must lay on the line NT', which is an orthogonal projection of the line MQ

in the plane base ZNT.
However, in this case it must hold dG;=dGy".

Derivation of the Le Chatelier—Shreder equation on the basis of relation
In @} ., =f[T, x:(T)]

By deducing the equation in question from the differential form of the function
In a;=1£(T, x;) it is assumed that the activity of the i-th component in a binary
liquid solution, a;, is (at constant pressure P) a function of absolute temperature T
and concentration x; of this substance in solution.

This assumption is generally correct. However, in those cases when we deal with
a liquid solution saturated with the i-th component (i.e. the solution is in
thermodynamic equilibrium with the pure solid component i) the corresponding
binary system ““‘i—;j”’ possesses only one degree of freedom as it follows from Gibbs
phase rule

v=k—-f+1=2-2+1

Two coexisting phases are the pure solid substance i and the liquid solution
saturated with this substance. Therefore, only one of the parameters T, x is
independent.

At first, let us consider the case when at solid—liquid equilibrium the indepen-
dent variable is absolute temperature T and thus x; =f(T).

In this case a; .,=F[T, x,] =F[T, x;(T)), or In a} ., =f[ T, x;(T)]. For the differen-
tial of a function of multiple variable of the given type it holds

. _(9Inaj. <8 ]na:'.cq> dx;
dlnai,eq—(—-aT ) ar+ () Sar (6)

We need to determine both partial derivatives in this equation. (In the next the
index ““i”” will be omitted to simplify the relations.) In order to determine the
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relation (3 In a}.,/3T), we shall use for activity the identity
G'=G"'+RTIna'  (P=const) (7)

As a standard state, the state of pure liquid (undercooled liquid) substance at the
temperature of the system will be chosen. Considering that we deal with the activity
of the substance in a liquid phase which is saturated with this substance, eqn (7)
will be written in the following way

1 _l (G-:‘_G(i“)cq
ln ai.eq_R T (8)

Then for the searched partial derivative it follows

<a In a'u,> =l i [(G-'_'G().l)eq] (9)
8T /., R 3T T .
Now it is necessary to rearrange the right side of eqn (9). Generally it holds
3 (G H
57 (7),~ T (10)
For G.,=f(T, x), G*'=f(T) (P =const) we get from eqn (10)
9 (Gu) _ _(H)re
aT(T>,,,,' T (1)
and
a GO,I Hﬂ.l
5t(1), =~ (12)
Then from eqns (11) and (12) it follows
3 G‘l_Go.! HI_HO.I .
After introducing from eqn (13) into eqn (9) we obtain
d1n a. 1 (H'—H"),
(5r) =g g (14)

Thus we have determined one of the partial derivatives in eqn (6). For
determining the second partial derivative in this equation, i.e. the expression
(3 In al,/3x)r, we shall utilize the condition for the phase equilibrium of this type
described by eqns (1) and (5).

It holds (P = const)

G =1[T, x(T)]
G**=1{(T)
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and therefore

. (3G, ac';;,> dr
dG““‘(_aT ) dT+(—ax T (15)
O,s __ aGOS>
4G <8T T (16)
With regard to eqn (5) it holds
G, 3G dx <aG°-s>
(8T> dT+(a ) ardT=\57 )97 (17)

For P =const, it generally holds
G=-S8dT
from which it follows for our case
dGl,= —-S8.,dT
dG% = —S§% 4T

and thus
3G, <
(288) - -..
aGO.s
(57 >= (5 ()
Combining eqns (17—19) we obtain
s 3Gy, dx
(8 dT+ (%22) X aT= —(5°%) dT 20
() dT+(52) 57 (5°) (20)
and after rearranging
3Gw\ _ & cos dT 1
<8x )T_(s §"rea dT dx dT
or
aG—qu I O,s d_I
<8x )T‘( =5 ke g (21

From the definition relation (7) we get for the case of phase equilibrium in

question the equality
3GL\ _ (a In a;q>
( ax )T‘RT ax /r (22)

After introducing from eqn (22) into eqn (21) we obtain

Chem. zvesti 33 (1) 15—22 (1979) 19



M. MALINOVSKY, V.SEKEROVA

alnan) T
RT(—ax T—(S S )x.chx

or

ox R T dx (22)
This relation can be further treated. It holds by definition that dH=V dP+ T dS
and therefore at the constant pressure dH =T dS. For an infinitesimal change of
the amount of the i-th substance in solution which is saturated with this substance
at temperature T it holds

(8 In a'cq> =l ($' =5, cq dr
T

(dH")e,=T(dS").,

For 1 mole of the i-th substance in the saturated solution having the same
composition and the same temperature it holds

(Hs.cq=T(8)x.cq (24)

where (H'), (S") are partial molar functions. Similarly, for 1 mole of the pure i-th
solid substance at the same temperature T

I_Ill.s___TSO,s (25)

From a comparison of eqn (24) with eqn (25) it follows that (H'— H*%), ., =
=T(S'—5"),.cq OF

(S$'—8°),.ca= ——(H1 H e (26)
By introducing from eqn (26) into eqn (23) we obtain
dlnay) _1 (H'—H*), . dT
( ox )T "R " dx (27)

The relation (27) is the searched partial derivative in eqn (6).

The expression (3 In al,/3x)r can be determined also in another way. From the
definition relations G=H — TS and dG=V dP - S dT it follows that (3G/3T),
= —S§ = G/T— H/T. If these relationships are applied to our problem it holds

(3G./3T),=GYT—-HYT [P] (28)
(@G**/3T)e =G**/T—H"/T (29)
After substituting from eqns (28) and (29) into eqn (17) we obtain

1 1 | 0,s s
% H <aaG> gidT_G dT_H"

dT
and because G!=G"*

dT [P, eq] (30)
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3G"\ dx (H'— H"),
< ) deT — dT 31)
With respect to eqn (22) it holds
dlna' (H' - H*),
RT< = ) Lar=""Tdar [P eq) (32)
and therefore
dlnay\ _(H-H").. dT
( ax )T‘ RT’ & P =y

which is identical with the relationship (27). Now we can introduce from eqns (14)
and (27) into eqn (6)

4 l
dlna,,=— L (H=H")..o dT+

R T

RCE S

R v i dx dT
or
_(—H'+H"+H'—H™),
RT dT

dlna.,=

The quantities H*' and H”* are functions of T only. Therefore it holds

H*' — AHOVos
dlnal, =" — dT =" dT (34)

From the formal point of view the result is the same as when we considered the
parameters T and x as mutually independent. In the present treatment we
considered T to be the independent parameter. In principle it would be possible to
carry out the derivation in an opposite way, i.e. to choose x as independent
variable. However, this is not practical because the thermodynamic functions
related to pure component (G*', G**, H*', H**) do not depend on x.

The presented proceeding is a new variant of derivation of the generalized Le
Chatelier—Shreder equation.
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