Vibrational spectra of vanadium(V) compounds. I. Divanadates with thortveitite structure

P. SCHWENDT and V. GRAUS
Department of Inorganic Chemistry, Faculty of Natural Sciences, Komenský University, 80100 Bratislava

Received 21 February 1974
Accepted for publication 8 May 1974
The vibrational spectra of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ were measured and assigned to anion $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ with respect to the $D_{3 d}$ symmetry. The calculated force constants of the modified valence force field were compared with the force constants of some analogous systems.

Compounds $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$ crystallize in one of a few structural types depending upon the ionic radii of atoms M and X . The compounds in which the ionic radius of X is greater than 0.6 A usually do not contain an isolated unit $\mathrm{X}_{2} \mathrm{O}_{7}^{n-}$ and the coordination of oxygen atoms around the atom X is octahedral. When the ionic radius of X is less than 0.6 A , two basic structural types are distinguishable with regard to the ionic radius of the \mathbf{M} atom. If the radius of M is greater than $c a .0 .97 \mathrm{~A}$, the structure is of the dichromate type. The XOX bridge is then bent and the maximum point-symmetry group of the anion is $C_{2 v}$. If the ionic radius of the atom M is less than 0.97 A , the structure is of the type of thortveitite or a type derived from it. The $\mathrm{X}-\mathrm{O}-\mathrm{X}$ angle is greater than in the structures of the dichromate type, usually about 180°. For the linear group XOX, the highest possible symmetry of the anion is $D_{3 d}$ [1]. Two compounds with the thortveitite structure are known among divanadates, namely $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ [2] and $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ [3].

It is of great importance to establish a configuration of the bridges $\mathrm{V}-\mathrm{O}-\mathrm{V}$ for the study of chaining of polyhedra VO_{x} in polyvanadates. Vibrational spectra of divanadates with the linear $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bridge are a convenient means in solving a relationship between the arrangement of the bridge $\mathrm{V}-\mathrm{O}-\mathrm{V}$ and wavenumbers of the stretching vibrations ν_{s} (VOV) and $\nu_{\mathrm{as}}(\mathrm{VOV})$.

Experimental

Preparation of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$

A mixture of CdO and $\mathrm{V}_{2} \mathrm{O}_{5}$ (2:1) was slowly heated to $900^{\circ} \mathrm{C}$ and kept at this temperature for 1 hr . Then the mixture was pulverized and again heated at $900^{\circ} \mathrm{C}$ for 3 hrs . Chemical analysis and X-ray powder diffraction patterns confirmed that the product was identical with $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ prepared by Au and Calvo [3].

Preparation of $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$

A mixture of MnO_{2} and $\mathrm{V}_{2} \mathrm{O}_{5}$ (2:1) was tempered at $750^{\circ} \mathrm{C}$ for 2 hrs . After pulverizing, the mixture was again tempered at $750^{\circ} \mathrm{C}$ for 5 hrs . Chemical analysis and X -ray diffraction patterns confirmed the identity of the prepared $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with the compound prepared by Dorm and Marinder [2].

Fig. 1. The i.r. spectra of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (--) and $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}(-)$.

Fig. 2. The Raman spectrum of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$.

The X-ray diffraction patterns were recorded by a Philips diffractograph with a goniometer PW 1058, radiation $\mathrm{Cu} K_{\alpha}$. The i.r. spectra were measured in Nujol mulls and in KBr and KI discs by instruments UR 20, IR 12 Beckman, and Perkin-Elmer 221.

The Raman spectra were measured by a Ramalog 3 instrument with the Ar+laser (excitation 488 nm). The Raman spectrum of $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ was of poor quality (the substance was brown-black) and some changes in the spectra occurred during repeated recordings. They were probably caused by structural changes.

Infrared and Raman spectra are seen in Figs. 1 and 2. Besides the discussed bands, the i.r. spectrum of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ contains also a broad band at about $590 \mathrm{~cm}^{-1}$ and a shoulder at $666 \mathrm{~cm}^{-1}$, probably corresponding to combination wavenumbers. A series of bands corresponding to the lattice vibrations is also seen in the Raman spectrum of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ below $200 \mathrm{~cm}^{-1}$. The i.r. and Raman spectra of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ were measured by Griffith and Lesniak [10] who reported, without assignment, the following bands: I.r. $970 \mathrm{~m}, 905 \mathrm{~s}$, 800 w, $375 \mathrm{w}, 317 \mathrm{~s}, 296 \mathrm{vs}$; Raman: 877 (10), 848 (3), 820 (2), 780 (0.5), 356 (2), 317 2), 264 (2), 226 (0.5).

Results and discussion

$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ possess the space symmetry group $C_{2 h}^{3}(C 2 / m)$ with two formula units in an elementary cell. The site symmetry group $C_{2 h}$ corresponds to this space group, thus the site symmetry group is identical with the factor group. A correlation between the groups $D_{3 l}$ and $C_{2 l}$ is $A_{1 g} \rightarrow A_{g}, A_{2 g} \rightarrow B_{g}, E_{g} \rightarrow A_{g}+B_{g}, A_{1 u} \rightarrow A_{u}, A_{2 u} \rightarrow B_{u}$, $E_{u} \rightarrow A_{u}+B_{u}$.

A model of $\mathrm{V}_{2} \mathrm{O}_{7}$ with the symmetry $D_{3 d}$ was chosen as a base for the analysis of normal vibrations. The number of vibrations in the individual types of symmetry is $3 A_{1 g}(\mathrm{R})$, $A_{1 u}(-), 3 A_{2 u}(\mathrm{IR}), 3 E_{g}(\mathrm{R}), 4 E_{u}(\mathrm{IR})$. The following coordinates of symmetry were used in calculations:

$$
\stackrel{A_{1 g}}{S_{1}}=6^{-1 / 2} \quad\left(r_{1}+r_{2}+r_{3}+r_{4}+r_{5}+r_{6}\right),
$$

$$
\begin{aligned}
& S_{2}= 2^{-1 / 2} \quad\left(d_{1}+d_{2}\right), \\
& S_{3}= 12^{-1 / 2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}\right) . \\
& A_{2 u} \\
& S_{5}= 6^{-1 / 2} \quad\left(r_{1}+r_{2}+r_{3}-r_{4}-r_{5}-r_{6}\right), \\
& S_{6}= 2^{-1 / 2} \quad\left(d_{1}-d_{2}\right), \\
& S_{7}= 12^{-1 / 2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}-\alpha_{5}-\alpha_{6}-\beta_{1}-\beta_{2}-\beta_{3}+\beta_{4}+\beta_{5}+\beta_{6}\right) . \\
& E_{g} \\
& S_{8 a}= 12^{-1 / 2}\left(2 r_{1}-r_{2}-r_{3}+2 r_{4}-r_{5}-r_{6}\right), \\
& S_{9 a}= 12^{-1 / 2}\left(2 \alpha_{3}-\alpha_{2}-\alpha_{1}+2 \alpha_{6}-\alpha_{5}-\alpha_{4}\right), \\
& S_{10 a}= 1^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}+2 \beta_{4}-\beta_{5}-\beta_{6}\right) . \\
& E_{u} \\
& S_{11 a i}=1 / 2\left(r_{2}-r_{3}-r_{5}+r_{6}\right), \\
& S_{12 a}= 1 / 2\left(\alpha_{2}-\alpha_{1}+\alpha_{4}-\alpha_{5}\right), \\
& S_{13 a}= 1 / 2\left(\beta_{2}-\beta_{3}-\beta_{5}+\beta_{6}\right) . \\
& S_{14 a}=
\end{aligned}
$$

The individual internal coordinates are as follows: r_{i} the change of the terminal V - $\mathrm{O}^{\text {s }}$ bond length while r_{1} and r_{4}, r_{2} and r_{5} as well as r_{3} and r_{6} are in trans position; d_{i} the change of the bridging $\mathrm{V}-\mathrm{O}^{\prime}$ bond length; α_{i} the change of the angle between bonds $r_{j}, r_{k}(i, j, k=1,2,3) ; \beta_{i}$ the change of the angle between bonds r_{i} and $d ; \varphi$ the change of the angle $\mathrm{V}-\mathrm{O}^{\prime}-\mathrm{V}$. The inactive torsion vibration of the type $A_{1 u}$ was not included

Table 1

Matrix of the force constants

$\begin{aligned} & A_{1 g} \\ & f_{r}+2 f_{r r}+A \\ & 3^{1 / 2} f_{r d} \\ & 0 \end{aligned}$	$\begin{aligned} & f_{a}+f_{d d} \\ & (3 r d / 2)^{1 / 2} f_{d \alpha}^{\prime} \end{aligned}$	$r^{2} / 2\left(f_{\alpha}+f_{\beta}+2 f_{\alpha \alpha}+2 f_{\beta \beta}-2 f_{\alpha \beta}^{\prime}-4 f_{\alpha \beta}+B\right)$
$\begin{aligned} & A_{2 u} \\ & f_{r}+2 f_{r r}-A \\ & 3^{1 / 2} f_{r a} \\ & 0 \end{aligned}$	$\begin{aligned} & f_{d}-f_{d a} \\ & (3 r d / 2)^{1 / 2} f_{d \alpha}^{\prime} \end{aligned}$	$r^{2} / 2\left(f_{\alpha}+f_{\beta}+2 f_{\alpha \alpha}+2 f_{\beta \beta}-2 f_{\alpha \beta}^{\prime}-4 f_{\alpha \beta}-B\right)$
$\begin{aligned} & E_{g} \\ & f_{r}-f_{r r}+C \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & r^{2}\left(f_{\alpha}-f_{\alpha \alpha}+D\right) \\ & r d\left(f_{\alpha \beta}^{\prime}-f_{\alpha \beta}\right) \end{aligned}$	$r d\left(f_{\beta}-f_{\beta \beta}+E\right)$
$\begin{aligned} & E_{u} \\ & f_{r}-f_{r r}-C \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & r^{2}\left(f_{\alpha}-f_{\alpha \alpha}-D\right) \\ & r d\left(f_{\alpha}^{\prime} \beta-f_{\alpha \beta}\right) \\ & 0 \end{aligned}$	$\dot{r} d\left(f_{\beta}-f_{\beta \beta}-E\right) \quad d^{2} \quad f_{\varphi}$

r and d are the bond lengths of $\mathrm{V}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}^{\prime}$ respectively; subscripts r and d stand for bonds of the terminal $\mathrm{V}-\mathrm{O}$ groups and bridging $\mathrm{V}-\mathrm{O}^{\prime}$ groups respectively, α for the angle $\mathrm{O}-\mathrm{V}-\mathrm{O}, \beta$ for $\mathrm{O}-\mathrm{V}-\mathrm{O}^{\prime} ; \varphi$ for $\mathrm{V}-\mathrm{O}^{\prime}-\mathrm{V} ; f_{r r}, f_{d d}$, and $f_{r d}$ are the force constants of interactions between neighbouring bonds; $f_{\alpha \alpha}, f_{\beta \beta}, f_{\alpha \beta}$ are the force constants for the case of two angles with two atoms in common, $f_{d \alpha}^{\prime}$ and $f_{\alpha \beta}^{\prime}$ for a bond and an angle or two angles with one common atom. A, B, C, D, and E are corresponding interactions. between the internal coordinates without a common atom.

Table 2
Calculated and experimental wavenumbers of bands

$\underset{\text { type }}{\text { Symmetry }}$	Assignment	Calculated wavenumbers [cm^{-1}]	Experimental wavenumbers [cm^{-1}]			
			$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$			$\begin{gathered} \mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7} \\ \mathrm{IR} \end{gathered}$
			R	IR		
$A_{1 g}$	TS	887	888			
	BS	486	486			
	TB	267	267			
$A_{2 u}$	TS	904		905		889
	BS	730		732		725
	TB	330				330
E_{g}	TS	844	857			
			828			
	TB	361	360			
	TB	317	320			
E_{u}	TS	825		858	833	840
				805	769	811
	TB	404		413		414
				402		403
	TB	269				288
						255
	BB	200				

TS - terminal stretching; BS - bridge stretching; TB - terminal bending: BB ibridge bending.
into calculations. The following numerical values were used for calculations of the kinematic coefficients and the force constants: the $\mathrm{V}-\mathrm{O}$ bond length 1.69 A , the $\mathrm{V}-\mathrm{O}^{\prime}$ bond length 1.76 A , the $\mathrm{V}-\mathrm{O}^{\prime}-\mathrm{V}$ angle 180°, the $\mathrm{O}-\mathrm{V}-\mathrm{O}$ and $\mathrm{O}-\mathrm{V}-\mathrm{O}^{\prime}$ angles 109.5°. A matrix of the force constants is listed in Table 1. An initial set of the force constants was selected by comparison with the force constants of analogous systems $[5,6]$ and anion $\mathrm{VO}_{4}^{3-}[4]$. The variation was made by means of partial derivations of the wavenumbers with respect to the force constants [7]. Values of $f_{r i}=0.35$ and $f^{\prime}{ }_{r d}=$ $=-0.21 \mathrm{mdyn} / \mathrm{A}$ were chosen and fixed in the calculations. The resulting values of the force constants are (in mdyn/A): $f_{r}=5.27, f_{d}=4.17, f_{r r}=0.79, f_{d d}=1.82, f_{\alpha}+$ $+f_{\beta}=0.74, f_{\alpha \alpha}+f_{\beta \beta}=0.02, f_{\alpha}-f_{\alpha \alpha}=0.45, f_{\beta}-f_{\beta \beta}=0.27, f_{\varphi}<0.08, A=-0.15$, $B=0.12, D=-0.05$. Other constants were assumed to be zero.

The calculated wavenumbers together with their experimental values are summarized in Table 2. Our value of f_{r} is enhanced in comparison with $f_{r}=4.59 \mathrm{mdyn} / \mathrm{A}$ reported by Müller and co-workers for VO_{4}^{3-} [4]. The force constant f_{d} is lower than f_{r} in conformity with the bond lengths. The high value of $f_{d d}$ may be a consequence of the nature of bonds in the linear arrangement of the group $V^{\prime} \mathrm{V}$. In such a case, both p orbitals of the bridging oxygen can fully share in a double π system [9]. Analogously high values of the force constants of the bond interactions are characteristic of linear and planar molecules and ions XO_{m}^{n-} with delocalized π bonds [11]. Mooney and Goldsmith [8] reported the value 1.97 mdyn/A for $\mathrm{ZrP}_{2} \mathrm{O}_{7}$ with a linear group POP. In the mentioned molecules and ions, a negative value of the force constant of the type $f_{d x}^{\prime}$ is not unusual.

The negative value of $f_{d z}^{\prime}$ is unavoidable for the reproduction of the experimental value $\nu_{3}\left(A_{1 g}\right)$.

In comparison with divanadates of the dichromate type [9], the wavenumber $\boldsymbol{v}_{\text {as }}$ ($\mathrm{VO}^{\prime} \mathrm{V}$) of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ is somewhat lower and the wavenumber $v_{\mathrm{s}}\left(\mathrm{VO}^{\prime} \mathrm{V}\right.$) is considerably lower. Thus the difference in the wavenumbers $\nu_{\mathrm{as}}\left(\mathrm{VO}^{\prime} \mathrm{V}\right)$ and $\nu_{\mathrm{s}}\left(\mathrm{VO}^{\prime} \mathrm{V}\right)$ increases. The decrease of wavenumbers of the stretching vibrations of the bridging group occurs in spite of the shortening of the $\mathrm{V}-\mathrm{O}^{\prime}-\mathrm{V}$ bonds and the corresponding increase of the force constant f_{d}. The decisive factor is apparently a strong decrease of the value of the corresponding kinematic coefficient with the increase of the angle $\mathrm{V}-\mathrm{O}^{\prime}-\mathrm{V}$.

References

1. Brown, I. D. and Calvo, C., J. Solid State Chem. 1, 173 (1970).
2. Dorm, E. and Marinder, B. O., Acta Chem. Scand. 21, 590 (1967).
3. Au, P. K. L. and Calvo, C., Can. J. Chem. 45, 2297 (1967).
4. Müller, A., Krebs, B., Rittner, W., and Stockburger, M., Ber. Bunsenges. Phys. Chem. 71, 182 (1967).
5. Mattes, R., Z. Anorg. Allg. Chem. 382, 163 (1971).
6. Hezel, A. and Ross, S. D., Spectrochim. Acta 23A, 1583 (1967).
7. Sverdlov, L. M., Kovner, M. A., and Krainov, E. P., Kolebatelnye spektry mnogoatomnykh molekul, p. 86. Nauka, Moscow, 1970.
8. Mooney, R. W. and Goldsmith, R. L., J. Inorg. Nucl. Chem. Lett. 31, 933 (1969).
9. Schwendt, P. and Petrovič, P., Proc. III Conf. Coord. Chem., p. 307. Smolenice-Bratislava, 1971.
10. Griffith, W. P. and Lesniak, P. J. B., J. Chem. Soc. (A) 1969, 1066.
11. KolebateInye spektry v neorganicheskoi khimii. (Yu. Ya Kharitonov, Editor.) P. 25. Nauka, Moscow, 1971.

Translated by F. Kopecký

