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The activity of the г-th component in the binary system "i—j" may be 
advantageously denned as a{ = x\s,i, where the coefficient kjn characterizes 
the interaction of the two components. For xt -> 1 this coefficient is identi
cal with the Stortenbeker correction factor. The suggested definition of the 
activity provides a rational explanation of the magnitude of the slope of 
tangent to the liquidus curve in the melting point of the г-th substance 
and besides it covers a wider field of application than some other relations 
used for the dependence at = i(xi). 

Let us consider the equilibrium "solidus—liquidus" in a simple eutectic system for
med by the components '"г" and "У". Classical thermodynamic analysis gives for the 
dependence T% = f (a*) the relation 

AH\ 
Tt=———± , (2) 

AS\ -Bin щ 

where T,- — crystallization temperature of the г-th substance of the mixture, 
AH] — melting enthalpy of the г-th component, 
AS\ — melting entropy of the г-th component, 
at — activity of the г-th component in the given mixture. 

Relation (1) holds on the assumption that the change of the molar heat capacity in 
the "solidus—liquidus" process, AGXp, is equal to zero [1], or if the considered tempera
ture interval T\ — Ti (T\ is the melting point of the pure г'-th component) is small enough. 

The experimental study of the phase equilibria in the systems under consideration 
leads to the dependence Ti = Í(XÍ), where xt is the mole fraction of the г-th substance 
in a liquid solution. In order to confront experimental and theoretical data calculated 
using eqn (1), it is necessary to know the function dependence a* = i(xi). Classical 
thermodynamics cannot provide the concrete form of this' dependence. For this purpose 
it is necessary to apply either the relation following from a certain model or an empirical 
or semiempirical dependence, which has to satisfy some physical boundary conditions. 

In the study of molten systems formed by ions, mostly relation following from the 
Temkin model of ideal ionic solutions [2] is used. Its application, however, has been 
found in some cases to encounter with complications. If the components introduce 

* Presented at the 2nd Czechoslovak Seminar on "Molten Salt Systems", Bratislava, 
April 11-12, 1973. 
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a greater number of different ions into a melt, then the relations for the calculation of 
the activity are comparably complicated. 

A special kind of difficulty occurs if one of the components is formed by cryolites. 
These substances dissociate especially at low concentrations by several schemes to 
yield different types of ions. Thus, e.g. in the system NaCl—NaeAlFe the number of 
non-common ions brought in by NaaAlFe into NaCl increases formally from 1.7 (at 
the eutectic point of the system, i.e. 11.0 mole % NaßAlFe) up to 7 (for zero concentration 
of NaßAlFe). At the eutectic concentration the equilibrium AlFjj" ^± AIF4 + 2F~ 
is assumed, for the concentration of Na3AlF6 lower than 1.2 mole % the supposed equi
librium is AIF4 + 2СГ ч± AlFgCL; + 2F~ and for quite low concentrations it is. 
AIF2CI.7 + 2СГ ^± AICI4 + 2F~ [3]. Each of these dissociation schemes leads to 
a different expression for the activity of NaCl and Na^AlFe, respectively. Thus, to ex
press the dependence of the activity of NaCl on its concentration along the liquidus 
curve of NaCl in the concentration range of 100 —89 mole % NaCl, as much as three 
different relations are needed. In addition we must be aware of the fact that the Temkin 
model is in principle inapplicable if, besides the ions, also the particles of molecular 
dimension but without any electric charge are present in the solution. 

All these defects can be removed by using the relationship 

a- = xfll

y {2) 

where k^i is a certain coefficient*, which is a function of the nature of both the substances 
forming the binary system as well as of the concentration. Let us call this dependence^ 
the "universal relationship". Apparently it follows from eqn (2): 

l i n a ; = 1. 

Thus, like for the Temkin model, the standard state for the universal relationship is 
the pure (in most cases undercooled) liquid state of the ?-th substance at the tempera
ture and pressure of the system. 

A. Rational deduction of the universal relationship 

The equation for the liquidus curve of an ideal solution 
AH{ 

T-t = — (3} 

AS* - В In xt 

derived with respect to Xi yields the relation 

dTi В AH\ 1 dxi (ASl - E In .r,-)* x{ 

(Both AH I and AS\ are assumed to be constant.) 
Experimentally it has been found, however, that in general the right side of eqn (4) 

has to be corrected by multiplication by the coefficient hjn, which is a function of the 
dissociation nature of both components i and j , and also — in general case — of the 
concentration. 

* Note: The present paper being in press, a paper by P. Fellner and J . Majling was 
published: Chem. Zvesti 27, 728 (1973), in which for the computation of the course of 
liquidus curves the relation was used a = xk (k being an integer identical with the 
Stortenbeker correction factor). 
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dT{ RAH\ 1 7 

= — - - kjß. (5} 
dx{ (AS? — R In xt)* Xi 

T h e equat ion of t h e l iquidus curve of a real solution (eqn (1)) derived wi th respect 
t o Xi leads t o t h e re lat ion 

dPj = BAHl . _I ^ {6) 

dx{ (ASl - R In o ť )
a си dxi 

Assumpt ion t h a t щ is a function of Xi only is for a n o t too wide t e m p e r a t u r e interva l 

satisfactorily fulfilled. T h e n also t h e dependence of кщ on t h e concent ra t ion m a y b e 

neglected. I t holds t h a t in t h e same interva l In щ « In x\. Then c o m p a r i n g eqns (5) 

a n d (6) we obta in 

1 den 1 
= — . hn (7} 

щ dxt Xi 

a n d b y separat ion of t h e variables a n d in tegra t ion we will h a v e 

In a-i = kjß • In Xi -j- In с 

a n d 

a, = *?'/.+. с, (8) 
respectively. 

T h e va lue of t h e in tegra t ion c o n s t a n t С m a y be easily d e t e r m i n e d in t h e following 

w a y : if Xi = 1, t h e n also щ = 1 a n d t h u s С = 0. 

Therefore i t definitely holds t h a t 

B. The ideal case: кщ = const 

L e t us as sume t h a t regardless of t h e va lue Xi t h e re lat ion kj,i = const = kff- holds-

T h e n for t h e l iquidus t e m p e r a t u r e of t h e г-th c o m p o n e n t of such a solut ion we o b t a i n 

eqn 

AH\ 
Ti = • (10) 

ASl-R^lnx, 

I t follows from e q n (10) t h a t for t h e special case, if kfj\ = 0 t h e ac t iv i ty c a n n o t be defined 

using eqn (2). This l imi ta t ion is, however, n o t very i m p o r t a n t , since t h e sys tems of 

t h a t k i n d only seldom occur (those of t h e t y p e MF—M3AIF6 belong t o t h e m ) . 

F r o m eqn (2) we obta in for кщ = const 

da.- , _. 
— 1 = km • a*>" (11) 
dxt 

a n d 

l im — = Щ{ = kfk = const . (12} 
ач^1 d.r,-

Consequently t h e l imit ing coefficient t h a t we d e n o t e d as kjß is ident ical wi th t h e S tor -
t enbeker correction factor kfj\ [4, 5] . 
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Thus it holds in general 
limkm = kfa. (13) 

For the slope of tangent to the liquidus curve of the i-th component we obtain from 
•eqn (10) the relation (5). 

With respect to eqns (11) and (IS) eqn (14) is valid: 

lim —^ - -K-±- Щ = Kfl • kfi, (14) 
xi+i dx; AH) 

where K\d is the constant of thermal depression of the г-th substance [4, 5]. 
Thus eqn (14) yields the value of the slope of tangent to the liquidus curve of the i-th 

component at a temperature unlimitedly approaching T\. I t has to be pointed out 
that eqn (14) also holds for the case when AC]p Ф 0, since the corrections caused by 
this simplification are annulated at x{ -> 1. In the same way also the physical condition 
of the existence of the inflection point (real or irrational) [4, 5] on the liquidus curve of 
the г-th component can be easily determined. The well-known mathematical condition 
•ô^TJdsc'f = 0 gives after some rearrangement 

ASr 

In ícť(infl) = — — 2. (15) 

Since xi -> 1, In Xi < 0, this leads to the following physical condition of the occurrence 
-of an inflection, point on the liquidus curve of the i-th component in the range of the 
values of x% (0;1) : 

AS\<ZR.k%. (16) 

For higher values of kffc the probability of the occurrence of an inflection point consi
derably increases. 

Relations (15) and (16) exactly hold only if AClp = 0. However, even if this condi
tion is not fulfilled, they still yield qualitatively correct results. 

C. The general case: кщ Ф const 

Thus we may define the activity as 

a. = x\{Xi) = e f ( * l ) l n X i (17) 
or s t 

ai = xp'<.ľi. (18) 

I t apparently must hold in the first case that \imf(xi) In xi = 0 for x -»• 1. 
Further we find that 

and from there 

da* 

dxi 

_ _ e f ( . l 4 ) lllft-i 

l i m = 
rci->l dxi 

. Г(ал)1па* H f(: 
L ян 

= Hm —f(xi) = kffr. 
Xl^l Xi 

Therefore f(l) = kffc and the function f (x) searched for may have the form 

f(xL) =h**-F(l -Xi). (19) 
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The actual type of the dependence F (I — Xi) has, however, to be determined on the 
basis of the experimental data. 

If the activity is defined using relation {18), then it holds 

lim ух = 1. 
.Ti->1 

The value of yi can be determined by comparison of the theoretical and experimental 
liquidus course of the г-th component of the system. 

D. Application of the universal relationship to the calculation of the liquidus course 
of NaCl in the system NaCl—M 3 A1F 6 

The advantage of using the universal relationship is evident especially in the change 
of the particle number, typical of systems containing cryolites. To prove this the theore
tical liquidus course of NaCl in the system NaCl —M3A1F6 was calculated in two ways: 

T [К] I I 1 I I I 1 

1080 -

0.99 0.98 0.97 0.96 0.95 

NQCi xNaCl • 

Fig. 1. Comparison of the theoretical course of the liquidus of NaCl in the systems NaCl — 
—M3AIF6 calculated by means of the Temkin model ( ), the universal relationship 

( — ) • 
The numerals represent the exponent in eqn (2) and are equal to the number of ions 
arising in the dissociation of one molecule of M3AIF6 in the given system and being not 

present in pure molten NaCl. 

by means of the Temkin model [2] and using the relationship (2) kj,i gaining the values 
of the integers 1, 2, 3, 4, 5, 6, 7, and 10. The graphical comparison of both results is in 
Fig. 1. I t is clear that within the experimental inaccuracy both methods yield the same 
result, the calculation according to the universal relationship being essentially simpler. 
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