Furan derivatives. LIX. 1,1,2-Trisubstituted ethylenes of 5-nitrofuran series

^aM. HRDINA, ^bA. JURÁŠEK, and ^aR. FRIMM

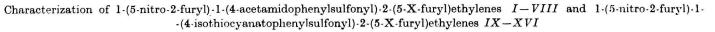
■Research Institute of Drugs, 920 01 Hlohovec

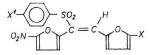
^bDepartment of Organic Chemistry, Slovak Technical University, 880 37 Bratislava

Received 12 November 1973

Synthesis of 1-(5-nitro-2-furyl)-1-(4-acetamidophenylsulfonyl)-2-(5-X-furyl)ethylenes (X = H, CH₃, Br, I, Cl, NO₂, SCH₃, and COOCH₃) by direct condensation of 5-nitrofurfuryl 4-acetamidophenyl sulfone with 5-substituted furaldehydes is described. Acid hydrolysis of the product afforded 1-(5-nitro-2-furyl)-1-(4-aminophenylsulfonyl)-2-(5-X-furyl)ethylenes which gave 1-(5-nitro-2-furyl)-1-(4-isothiocyanatophenylsulfonyl)-2-(5-X-furyl)ethylenes by reaction with thiophosgene.

In our previous works we dealt with the preparation and structural study of α,β -unsaturated sulfones of 5-nitrofuran series with phenyl [1, 2] and methyl residues [3], respectively on the SO₂ group.


In this work described derivatives were synthesized with the purpose to find out their biological activities. Molecules of these compounds contain such structural groups which are often present in biologically active compounds, *i.e.* 5-nitrofuran ring bound to ethylene, sulfo, and isothiocyanate groups [4-7].


Acetamido derivatives I-VIII were prepared by one-step condensation of 5-nitrofurfuryl 4-acetamidophenyl sulfone with the appropriate 5-substituted furaldehydes in acetic acid or its esters under the catalytic action of acetate salts and amines. Their acid hydrolysis afforded the appropriate amino derivatives which gave the isothiocyanates IX-XVI by reaction with thiophosgene in water-chloroform medium and inert atmosphere.

Physical constants and data of elemental analysis of the prepared compounds are in Table 1. Some compounds showed wide range of melting points, namely compounds IV, VI, and IX. These derivatives were probably mixtures of geometrical isomers E and Zsimilarly as was the case with other 1,1,2-trisubstituted ethylene derivatives [1].

Infrared and ultraviolet spectral data are summarized in Table 2. The asymmetric and symmetric vibrations of $-NO_2$ and $-SO_2$ groups in the i.r. spectra are most significant for the characterization of these compounds. Bands of $\nu_{as}(NO_2)$ appeared as a complex band at $1530-1510 \text{ cm}^{-1}$ with compounds I-VIII, while with IX-XVI, they were split into a band of medium intensity with a constant position at 1545 cm^{-1} and a sharp one of high intensity at $1515-1510 \text{ cm}^{-1}$. The band positions of $-NO_2$ and $-SO_2$ vibrations were not influenced by the nature of substituents. Compounds IX-XVIshowed a broad complex band of high intensity in the region of $2117-2102 \text{ cm}^{-1}$ with a shoulder at 2200 cm^{-1} that was characteristic of -NCS group. All the other bands

 $r < t^{-1}$

	Section and the sector of the		1000 Control 1000 Co	and any a second s			din di				
, No.		371	77 1			Calculated/found			Yield	М.р.	
	Х	X^1	Formula	M	% C	% H	% N	% S	[°₀]	[°C]	
I	Н	NHCOCH3	$C_{18}H_{14}N_2O_7S$	402.38	53.73 53.87	$3.50 \\ 3.63$	$\begin{array}{c} 6.96 \\ 6.92 \end{array}$	7.96 7.92	46	173 - 176	
II	CH_3	NHCOCH3	$C_{19}H_{16}N_2O_7S$	416.32	$\begin{array}{c} 54.81 \\ 54.79 \end{array}$	$\begin{array}{c} 3.87 \\ 3.94 \end{array}$	$\begin{array}{c} 6.72 \\ 6.74 \end{array}$	$7.70 \\ 7.63$	51	140 - 142	
III	Br	NHCOCH3	$C_{18}H_{13}N_2O_7SBr$	481.29	$\begin{array}{c} 44.91\\ 45.20\end{array}$	$\begin{array}{c} 2.72 \\ 2.80 \end{array}$	$\begin{array}{c} 5.82 \\ 5.90 \end{array}$	$\begin{array}{c} 6.66\\ 6.72 \end{array}$	42	167 - 170	
IV	I	NHCOCH3	$C_{18}H_{13}N_2O_7SI$	528.28	$\begin{array}{c} 40.92\\ 40.63\end{array}$	$\begin{array}{c} 2.48 \\ 2.61 \end{array}$	$\begin{array}{c} 5.30\\ 5.41\end{array}$	$\begin{array}{c} 6.06 \\ 5.96 \end{array}$	34	148 - 158	
V	Cl	NHCOCH ₃	$C_{18}H_{13}N_2O_7SCl$	436.82	$\begin{array}{c} 49.50\\ 49.34\end{array}$	$2.80 \\ 2.83$	$\begin{array}{c} 6.41 \\ 6.33 \end{array}$	$7.34 \\ 7.43$	42	167 - 169	
VI	$\rm NO_2$	NHCOCH ₃	$C_{18}H_{13}N_3O_9S$	447.38	$\begin{array}{c} 48.32\\ 48.45\end{array}$	$\begin{array}{c} 2.93 \\ 2.99 \end{array}$	$9.39 \\ 9.43$	$7.16 \\ 7.30$	37	148 - 160	
VII	SCH_{3}	NHCOCH ₃	$\rm C_{19}H_{16}N_2O_7S_2$	448.38	$50.89 \\ 50.71$	$\begin{array}{c} 3.59 \\ 3.56 \end{array}$	$\begin{array}{c} 6.24 \\ 6.34 \end{array}$	$\begin{array}{c} 14.30\\ 14.25\end{array}$	34	149 - 155	
VIII	COOCH_3	NHCOCH3	${\rm C_{20}H_{16}N_{2}O_{9}S}$	460.42	$\begin{array}{c} 52.17\\ 52.19\end{array}$	$3.50 \\ 3.57$	$\begin{array}{c} 6.08 \\ 6.30 \end{array}$	$6.96 \\ 7.20$	56	164 - 168	
IX	н	NCS .	$\rm C_{17}H_{10}N_2O_6S_2$	402.40	50.74 50.66	$\begin{array}{c} 2.50\\ 2.42\end{array}$	$\begin{array}{c} 6.96\\ 6.86\end{array}$	$\begin{array}{c} 15.93\\ 15.75 \end{array}$	28	86 - 92	
	summer of a second	المراجعة والمحفوقة فيعد فالريدة العتوا مس	and the second s								

419

No.	X	371	T3	M	Calculated/found				Yield	М.р.
		X^1	Formula		%с	%н	% N	%8	[%]	[°C]
X	CH ₃	NCS	$C_{18}H_{12}N_2O_6S_2$	416.43	51.91 51.80	2.90 2.93	6.72 6.77	15.40 15.31	30	177 - 182
XI	Br	NCS	$\mathrm{C_{17}H_9N_2O_6S_2Br}$	481.30	$\begin{array}{c} 42.42\\ 42.36\end{array}$	$1.88 \\ 1.97$	$5.82 \\ 5.71$	$\begin{array}{c} 13.32\\ 13.43 \end{array}$	27	165 - 172
XII	Ι	NCS	$\mathrm{C_{17}H_9N_2O_6S_2I}$	528.30	$\begin{array}{c} 38.64 \\ 38.71 \end{array}$	$\begin{array}{c} 1.71 \\ 1.78 \end{array}$	$5.30 \\ 5.20$	$\begin{array}{c} 12.31 \\ 12.22 \end{array}$	31	170 - 175
XIII	Cl	NCS	$\mathrm{C_{17}H_9N_2O_6S_2Cl}$	436.85	$\begin{array}{c} 46.75\\ 46.70\end{array}$	$\begin{array}{c} 2.08\\ 2.14\end{array}$	$\begin{array}{c} 6.42 \\ 6.53 \end{array}$	$\begin{array}{c} 14.70 \\ 14.75 \end{array}$	29	175 - 177
XIV	NO_2	NCS	$\mathrm{C_{17}H_9N_3O_8S_2}$	447.40	$\begin{array}{r} 45.64 \\ \overline{45.69} \end{array}$	$\begin{array}{c} 2.02\\ 2.10\end{array}$	$9.39 \\ 9.26$	14.33 14.47	28	105-110
XV	SCH_3	NCS	$C_{18}H_{12}N_2O_6S_3$	448.49	$\begin{array}{c} 48.20\\ 48.13 \end{array}$	$\begin{array}{c} 2.69 \\ 2.61 \end{array}$	$\begin{array}{c} 6.24 \\ 6.16 \end{array}$	$\begin{array}{c} 21.44\\ 21.52 \end{array}$	30	183 - 185
XVI	COOCH_3	NCS	$C_{19}H_{12}N_2O_8S_2$	460.44	$49.56 \\ 49.51$	$\begin{array}{c} 2.62 \\ 2.57 \end{array}$	$6.08 \\ 6.16$	$13.92 \\ 13.79$	28	$160 \rightarrow 165$

Table 1 (Continued)

No.		λ_{\max}	[nm]		$v_{\rm as}({ m NO}_2)$	$v_{\rm s}({ m NO}_2)$	$v_{as}(SO_2)$	$v_{\rm s}({ m SO}_2)$	v(C - O - C)	$v_{def}(C-H)$	
NU.		lo	gε		[cm ⁻¹]						
I	$\begin{array}{r} 208 \\ 4.56 \end{array}$	$\begin{array}{r} 275\\ 4.51 \end{array}$	$313 \\ 4.67$	392 i .3.94	1510	1360	1335	1158	1030 	900	
II	$\begin{array}{r} 209 \\ 4.42 \end{array}$	$\begin{array}{r} 274 \\ 4.38 \end{array}$	$\begin{array}{r} 321 \\ 4.53 \end{array}$	412 i 3.80	1530	1360	1332	1158	1040	900	
III	$\begin{array}{r} 211 \\ 4.59 \end{array}$	$\begin{array}{r} 271 \\ 4.55 \end{array}$	$\begin{array}{r} 316 \\ 4.50 \end{array}$	405 i 3.68	1520	1360	1336	1158	1030	900	
IV	$\begin{array}{r} 210\\ 4.57\end{array}$	$\begin{array}{r} 270\\ 4.48\end{array}$	319 4.60	407 i 3.92	1520	1559	1334	1158	1030	897	
V	209 4.49	$\begin{array}{r} 270\\ 4.38\end{array}$	$\begin{array}{r} 315\\ 4.38\end{array}$	407 i 3.52	1510	1361	1330	1157	1030	892	
VI	$\begin{array}{r} 210\\ 4.54 \end{array}$	265 4.48	317 sh 4.42	382 i 4.14	1512	1359	1335	1159	1030	900	
VII	$\begin{array}{r} 208 \\ 4.57 \end{array}$	$\begin{array}{r} 269 \\ 4.50 \end{array}$	$\begin{array}{r} 323\\ 4.43\end{array}$	412 i 3.92	1512	1360	1330	1158	1032	896	
VIII	208 , 4.51	268 4.41	$\begin{array}{r} 313\\ 4.54 \end{array}$	368 i 4.07	1520	1360	1334	1157	1033	900	

Table 2

٠

FURAN DERIVATIVES, LIN

	Ne

No.		λ _{max} [nm] log ε		$r_{\rm as}({ m NO}_2)$	$\nu_{\rm s}({ m NO}_2)$	$v_{\rm as}({ m SO}_2)$	$\frac{r_{\rm s}({\rm SO}_2)}{[{\rm cm}^{-1}]}$	r(C-O-C).	$v_{\rm def}(\rm C-H)$	r(NCS)
IX	232 4.44	290 4.53	_	1515 1545	1365	1320	1159	1031	892	2115 2200
X	$\begin{array}{r} 232 \\ 4.34 \end{array}$	289 4.40	323 i 4.20	$\frac{1515}{1545}$	1369	1320	1159	1032	899	$\begin{array}{c} 2112 \\ 2200 \end{array}$
XI	$\begin{array}{r} 231 \\ 4.39 \end{array}$	$\begin{array}{r} 295 \\ 4.49 \end{array}$	$\begin{array}{c} 322 ext{ sh} \\ 4.45 \end{array}$	$\begin{array}{c}1512\\1545\end{array}$	1368	1320	1160	1031	900	$\begin{array}{c} 2115 \\ 2200 \end{array}$
XII	$\begin{array}{r} 230 \\ 4.32 \end{array}$	$\begin{array}{r} 301 \\ 4.48 \end{array}$	-	$\begin{array}{c} 1510 \\ 1545 \end{array}$	1365	1315	1157	1032	899	$\begin{array}{c} 2115\\ 2200 \end{array}$
XIII	234 4.41	$\begin{array}{r} 292 \\ 4.43 \end{array}$	325 i 4.23	$\frac{1510}{1545}$	1367	1315	1157	1031	900	$\begin{array}{c} 2114\\ 2200 \end{array}$
XIV	$\begin{array}{r} 231 \\ 4.47 \end{array}$	$\begin{array}{r} 294 \\ 4.54 \end{array}$	389 i 3.47	$\frac{1511}{1545}$	1364	1319	1158	1031	898	$\begin{array}{c} 2113\\ 2200 \end{array}$
XV	$\begin{array}{r} 232 \\ 4.32 \end{array}$	$\begin{array}{r} 288 \\ 4.35 \end{array}$	324 i 4.19	$\begin{array}{c} 1510 \\ 1545 \end{array}$	1364	1318	1158	1031	900	$\begin{array}{c} 2117\\ 2200 \end{array}$
XVI	230 4.30	313 4.45	-	1510 1545	1362	1317	1158	1030	900	$\begin{array}{c} 2102\\ 2200 \end{array}$

Table 2 (Continued)

.

i - inflex; sh - shoulder.

belonged to aliphatic C=C vibrations, vibrations of the furan ring, and $\nu_{def}(C-H)$ vibrations, respectively. A characteristic band for furan ring was observed at 900-892 cm⁻¹ with all compounds. The last absorption band in the u.v. spectra appeared in most cases as an inflex or shoulder at 368-412 nm but with compounds IX-XVI (except XIV) at 322-325 nm. The position of this band indicated that the investigated 1,1,2-trisubstituted ethylenes represented in-plane systems [1-3].

Experimental

5-Nitrofurfuryl 4-acetamidophenyl sulfone was prepared from sodium 4-acetamidobenzenesulfinate and 5-nitrofurfuryl nitrate [8, 9]. Sodium 4-acetamidobenzenesulfinate was obtained from acetanilide [10-12] and 5-nitrofurfuryl nitrate by nitration of furfuryl alcohol [13-15]. 5-Substituted aldehydes of the furan series were synthesized according to [16-22].

Infrared spectra were measured on a UR-20 (Zeiss, Jena) spectrophotometer in NaCl cells of 0.02 mm thickness. The apparatus was calibrated with polystyrene foil. Saturated chloroform solutions of compounds were measured; however, KBr technique was applied to take the spectra of NCS derivatives.

Ultraviolet spectra of compounds I-VIII (ethanol) and compounds IX-XVI (dimethylcellosolve) were measured on a recording Specord UV-VIS (Zeiss, Jena) spectrophotometer in 10-mm cells. The concentration of compounds varied from $2.5 \times 10^{-5} - 5.0 \times 10^{-5}$ M. The measurement accuracy was ± 1 nm.

1-(5-Nitro-2-furyl)-1-(4-acetamidophenylsulfonyl)-2-(5-X-furyl)ethylenes (I-VIII)

To 5-nitrofurfuryl 4-acetamidophenyl sulfone (3.24 g; 0.01 mole) and the appropriate 5-substituted furaldehyde (0.011 mole) in glacial acetic acid (25 ml), ammonium acetate (1.5 g; 0.02 mole) and benzylamine (0.25 ml) were added. This mixture was refluxed for 3 hrs, cooled, and poured onto small pieces of ice (100 g) under vigorous stirring. The formed precipitate was sucked off, washed with water, and dried. The crude product was extracted with chloroform or acetone. After boiling the extract with charcoal, filtration, and addition of ether, petroleum ether, or water, the product was precipitated and purified on a chromatographic column of alumina (Brockmann) in the solvent system ethyl acetate-benzene (2:1).

1-(5-Nitro-2-furyl)-1-(4-aminophenylsulfonyl)-2-(5-X-furyl)ethylenes

Acetamido derivative I-VIII (0.01 mole) in 6 N hydrochloric acid (150 ml) was refluxed for 2 hrs. Charcoal was added to the solution, boiled, and filtered. After cooling the filtrate, the appropriate amines were liberated by addition of ammonium hydroxide to pH 7-8. The precipitate was sucked off, washed with water, dried, and used for preparation of compounds IX-XVI.

1-(5-N itro-2-furyl)-1-(4-isothiocyanatophenylsulfonyl)-2-(5-X-furyl)ethylenes (IX-XVI)

Water (250 ml) and chloroform (250 ml) were poured into a 1000-ml three-necked flask provided with a stirrer and a nitrogen inlet. Thiophosgene (2.28 g; 0.02 mole) and calcium carbonate (10 g) were added into the solution under stirring. Then the previously prepared solution of amino derivative (0.018 mole) in chloroform (150 ml) was added dropwise from a separation funnel. The flask content was stirred for 2 hrs. Charcoal was added to the separated chloroform layer, boiled, and filtered. The filtrate was dried with calcium chloride and after filtration chloroform was distilled off. The solid residue was crystallized from acetone and purified chromatographically as compounds I-VIII.

References

- 1. Jurášek, A. and Kováč, J., Collect. Czech. Chem. Commun. 38, 1705 (1973).
- 2. Jurášek, A., Kováč, J., and Geisbacher, D., Collect. Czech. Chem. Commun., in press.
- 3. Jurášek, A., Kováč, J., and Abrahám, J., Chem. Zvesti 28, 262 (1974).
- 4. Dood, M. C., Stillman, W. B., Roys, M., and Crasby, C., J. Pharmacol. Exp. Ther. 82, 11 (1944).
- Giller, S. A., Furacilin i opyt ego primeneniya. (Furacilin and its Application.) Izd. Akad. Nauk Latv. SSSR, Riga, 1953.
- 6. Miura, K., Oohashi, T., Matsuda, S., and Igarashi, Y., Yakugaku Zasshi 83, 771 (1963).
- Roblin, R. O., Williams, J. H., and Anderson, G. W., J. Amer. Chem. Soc. 63, 1930 (1941).
- 8. Jurášek, A., Kováč, J., and Hrdina, M., Patent pending, No. PV-1640-71.
- 9. Jurášek, A., Kováč, J., Krutošíková, A., and Hrdina, M., Collect. Czech. Chem. Commun. 37, 3144 (1972).
- 10. Steward, J., Organic Syntheses, Coll. Vol. I, p. 8. Wiley, New York, 1948.
- 11. Steward, J., Organic Syntheses, Coll. Vol. I, p. 7. Wiley, New York, 1948.
- 12. Allen, P., Jr., J. Org. Chem. 24, 255 (1959).
- 13. Horward, J. C. and Klein, G., J. Org. Chem. 7, 23 (1942).
- 14. Grever, G., US Patent 2 980 704 (1971).
- 15. Michels, J. G. and Grever, G., J. Amer. Chem. Soc. 78, 5349 (1956).
- 16. Ponomaryev, A. A., Sintezy i reakcii furanovykh veshchestv. (Synthesis and Reactions of Furan Compounds.) P. 44. Izd. Sarat. Inst., Saratov, 1960.
- 17. Nazarova, Z. N., Zh. Obshch. Khim. 24, 575 (1954).
- 18. Nazarova, Z. N., Zh. Obshch. Khim. 25, 539 (1955).
- 19. Gilman, H. and Wright, G. F., Rec. Trav. Chim. Pays-Bas 25, 539 (1955).
- 20. Gilman, H. and Wright, G. F., J. Amer. Chem. Soc. 52, 2550 (1930).
- 21. Carro, M., Gualtieri, F., Riocieri, F. M., and Stein, M. L., Farmaco, Ed. Sci. 19, 450 (1964).
- . 22. Mundzhoyan, A. L., Sintezy geterogennykh soedinenii, 3. (Synthesis of Heterogeneous Compounds.) P. 47. Izd. Akad. Nauk Armen. SSR, Jerevan, 1958.

Translated by A. Kardošová