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The values of relative expansions found experimentally in the systems 
water —particles and air —particles were compared with the equations for 
theoretical relative expansion derived by Pyle and Harrison [8] on the 
basis of two-phase model of nonuniformly fluidized beds. A disagreement 
between theoretical equation and visual observation appears. 

During the last 20 years a number of researchers studied fluidized beds; so far they 
have not succeeded in developing a satisfactory hydrodynamic model. Recently the 
so-called two-phase model of nonuniformly fluidized beds attracted attention. I t is 
based on visual observation as well as on the measurements of physical characteristics 
of beds by capacitance technique and by optical, X-rays, and radioisotopic methods. 
These measurements were performed by several authors, namely Morse and Ballon [1], 
Dotson [2], Toomey and Johnstone [3], Romero and Johanson [4], Lanneau [5]. Baum-
garden and Pigford [6], Harrison, Davidson, and de Koch [7] el id. 

The concept of a nonuniformly fluidized bed according to two-phase model may be 
expressed as follows. A nonuniformly fluidized bed consists of two regions: 

a) a dense suspension which is often denoted improperly as a continuous phase or 
dense phase; 

b) a dilute suspension which is often denoted improperly as a dilute phase. 
The flow-rate of fluid through the dense suspension equals the flow-rate through 

the bed at the incipient fluidizing velocity Qi. The remainder of fluid Qb exceeding the 
incipient fluidizing velocity volume flow passes through the bed discontinuously as 
bubbles and produces a dilute suspension. The total flow-rate of fluid Q may then be 
expressed by the relationship 

Q = Qb + Qi. (1) 

By dividing this equation by the cross section of column S we obtain 

W = Wb + Wi, (2) 

where w is the superficial velocity of fluid in the column, гсь is the velocity of fluid (re­
ferred to the cross section of column) flowing in bubbles, and wt is the incipient fluidizing 
velocity. 
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The equation (1) has to be considered an unverified hypothesis which defines Q^. 
This definition of Qb from which the definition ofwb according to the equation (2) ensues 
is a generali}^ accepted hypothesis of the two-phase model. 

However, the solution of individual problems requires the introduction of further 
independent quantities and their definitions which would enable to get different modi­
fications of the two-phase model as well as various adequate relationships among the 
quantities. For instance, the volume of bubbles in bed is of importance for expressing 
the height L of nonuniformly fluidized bed. This volume may be determined if the rising 
velocity of bubbles in bed иъ is known. On the basis of incomplete experimental knowl­
edge Pyle and Harrison [8] put 

иь = иы + Кгиь, (3) 

where the dimensionless coefficient К assumes the values 1.00 and 1.20 for a two- or 
three-dimensional bed, respectively. The symbol иы stands for the rising velocity of 
separate bubble through the bed in the proximity of the incipient fluidization which 
depends merely on the acceleration due to gravity g and the inner diameter of column D; 
for two- or three-dimensional bed the velocity is given by 

иы = 0.23(£7 D)o-s (4) 
•or 

иы = 0.35(0 £>)°-5, (5) 

respectively. 
Assuming that all bubbles are of equal size (and move with the same velocity), the 

subsequent equation ensues from equations (1 — 5) for expansion 

L Kw — г/'i — иы 

Since according to the authors [8] the bubbles are of different size and move with different 
rising velocity while the equations (3 — 5) define the maximum velocity, the quantity L 
in equation (6) represents the minimum value of the bed height. 

On the basis of graphical comparison of the theoretical expansions according to equa­
tion (6) with the values presented by Pyle and Harrison [8] it is not possible to judge 
objectively the accuracy of the two-phase model because the authors give no data con­
cerning the method of measurement, the kind of fluid used, the parameters of particles, 
etc. 

The comparison of our experimental values found for the systems water —particles 
and air—particles with equation (6) gives a new approach to the accuracy of the assump­
tions of Pyle and Harrison [8]. 

Experimental 

The measurements were carried out with systems water —particles (glass column 
0.01148 m in diameter; height 1.01m; brass grid; screened glass Ballotini; fractions 
ranging from 1.260 to 21.45 X 10 - 4 m in diameter) and air —particles (perspex glass 
column of inner diameter 0.1101m; height 1.55m; screened glass Ballotini; fractions 
from 1.265 to 4.424 x 10~4 m). The characteristics of the particles used are given in 
Table 1. 
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Table 1 

D e n o t a t i o n a n d character is t ics of t h e samples of t h e used glass part ic les 

Sample 

Л x 

An 
A, 
A, 
Аъ 

A6 

# 1 

#•> 
B3 

# 4 

Effective diameter 
of particles d • 104 

[m] 

1.260 
2.130 
4.650 
6.110 

11.48 
21.45 

1.265 
1.528 
2.078 
4.424 

Density 
of particles 

QP 

[kg/m3] 

2778.0 
2726.0 
2744.0 
2729.9 
2737.0 
2572.0 
2615.3 
2624.9 
2684.3 
2697.9 

Archimedes 
number 

Ar 

30 
168 

1 613 
2 758 

20 810 
135 000 

197 
350 
908 

8 955 

Fluidization 
liquid 

water 
water 
water 
water 
water 
water 
air 
air 
air 
air 

T h e nonuniformly fluidized beds manifest themselves [9] b y t h e f luctuation of t h e 

e x p a n d e d bed height between Lmax a n d Lmin. I n a sufficiently long t i m e interval of 

observat ion T (5 minutes) these b o u n d a r y values are fairly reproducible. T h e heights 

Lmax a n d Lmin were measured visually b y m e a n s of a sliding p a p e r s t r ip. F r o m t h e 

measured values t h e average height of e x p a n d e d bed La was calculated as a n a r i t h m e t i c 

m e a n 

La = 
-L/max -|- -L/min 

(7) 

I n systems fluidized by air t h e beginning of t h e fluctuation of t h e bed height was 

observed immediate ly above t h e incipient fluidizing velocity. 
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Fig. 1. E x p e r i m e n t a l dependence of t h e relat ive m a x i m u m (Ln^x/L0) a n d m i n i m u m 

(Lr. m/L0) height of fluidized bed on Reynolds n u m b e r (Be) for t h e sys tem air —part ic les 

a t various sample weights m of t h e particles B2. 

m — 1.50 k g ; D m — 2.00 k g ; • m — 2.50 k g ; • m = 4.00 k g ; л incipient fluidizing 

velocity, 

graphical representat ion of equat ions (16), (17), (18), a n d (19); Table 2. 
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Fig. 2. E x p e r i m e n t a l dependence of t h e relat ive m e a n height (La/'L0) of fluidizecl bed 

on Reynolds n u m b e r (Be) for t h e sys tem air —part ic les at various sample weights m 

of t h e part icles B2. 

O m = 1.50 k g ; m = 2.00 k g ; • m = 2.50 k g ; • m — 4.00 k g ; incipient fluidizing 

velocity. 
graphical representa t ion of equat ions (20) a n d (21); Table 2. 

Figs. 1 a n d 2 show t h e results of m e a s u r e m e n t s obta ined with t h e sys tem air —part ic les 

for a sample of part icles B.2 as relat ionships 

log [Lma*/£o] = f ( logtfe), 

log [Lm ,„/Z0] =•- f (log Be) 

or La/Lo - f (Be), 

where LQ is the height of compac t bed of part icles. 

Similar results were obta ined also wi th t he samples of part icles Bi, Вл, a n d />,. I t 

is w o r t h noticing t h a t t h e values Lmax/Ai, Bmin/L0, a n d L*/L0 are pract ical ly independent 

of t h e weight of part icles m or L0. F r o m t h e d i s t r ibut ion of points in Figs. 1 a n d 2 it 

m a y be concluded t h a t these relat ionships change a b r u p t l y which m a y be expressed 

by two power equat ions of t h e t y p e 

for t h e relat ionships 

a n d 

log у = log а о ax log .r 

log [Lm&K/L0] =--. f (log Be) 

(S) 

log [Lmin/L0] = í (log Re) 

or by two linear equat ions of the t ype 

У = b* -г &i (0) 
for t h e re lat ionship 

La/L0 = f (Be). 

T h e values of t h e p a r a m e t e r s al. cr2, 6 l s a n d b.2 for individual series of m e a s u r e m e n t s 

which were calculated as a r i thmet ic m e a n s or by t h e m e t h o d of least squares are given in 
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Table 2 

Resul t s of m a t h e m a t i c a l eva luat ion of t h e m e a s u r e m e n t s in t h e sys tem air — part icles 

Sample Bi Вя 

Ar = 197 350 908 

Д е с,а — Д е с,тах 0.731 0.974 1.52 

В, 

8955 

£ 
II 

S 

£ 
II 

£ 

Rei<Re< 

^ Д е с , т 1 п 

-km In/AJ = 

E q u a t i o n 

•ДСс,т1п — 

Re> 
> -ReCfmin 

Rei<, 
<,Re<, 

^ Д е с , т а х 

•^min/Aj -

E q u a t i o n 

Ьтах/^о = 

E q u a t i o n 

•ßec,max — 

Re > 
>• xřec,max 

Rei<, 
^Re<, 
<*ReCtb 

Lmnx/LQ — 

E q u a t i o n 

UjL0 = 

E q u a t i o n 

1.76 Д е 0 - 0 2 0 5 

{10) 

1.56 

1.48 Ä e 0 ' " 1 

W) 

1.83 ire0-0 3 7 3 

(12) 

0.731 

2.08 Äe0-4 5 0 

(73) 

1.71 + 0.0975 Äe 

(14) 

1.73 Д е 0 - 0 2 8 0 

(16) 

1.94 

1.36 Д е 0 - 3 9 7 

(17) 

1.82 Д е 0 - 0 5 9 7 

(W) 

0.975 

1.84 Д е 0 - 4 5 6 

(20) 

1.70 + 0.0773 Де 

(20) 

1.71 Д е 0 - 0 3 9 7 

(22) 

4.11 

0.866 Д е 0 - 5 2 2 

(23) 

1.76 Д е 0 - 0 7 7 3 

(24) 

1.52 

1.50 Д е 0 - 4 5 7 

(25) 

1.67 + 0.0810 Де 

(26) 

1.58 Д е 0 - 0 4 9 3 

(25) 

9.92 

0.691 Д е 0 - 4 0 9 

(20) 

1.56 Д е 0 - 0 6 0 0 

(30) 

6.42 

0.506 Д е 0 - 6 6 7 

( 3 i ) 

1.72 + 0,00054 Де 

(32) 

6.42 

Де > 

> -Rec,a Equation 

1.45 + 0.469 Де 1.46 + 0.362 Де 1.44 + 0.228 Де 

(lô) (21) (27) 

1.07 + 0.101 Де 

(33) 
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equations (10 — 33) in Table 2. The relationships according to the equations in Table 2 are 
drawn as full lines in Figs. 1 and 2 and correspond to the sample of particles B2. 

The values of Reynolds numbers at which the break appears according to Figs. 1 
and 2 are denoted J?eCfma.x, Äec,min, Rec,a. and increase with the value of the number 
Ar. In our experiments Ar G <197; 8955); therefore no profounder quantitative conclu­
sions concerning this relationship may be drawn. 

In systems fluidized by water the beginning of the fluctuation of the bed height was 
always observed visually in the so-called transition region of flow which is limited by 
the interval Reci < Re < ReC2, Recl and ReC2 being the first and the second critical 
Reynolds number according to Beňa et al. [10]. 

Discussion 

By inserting from (4) or (5) into (6) and introducing a dimensionless complex Z 

W — ?v'i 

Z = (34). 
(g D)o.5 

equation (6) may be transformed either into the form 

U Z 
— = 1 (35) 
L 1.00 Z + 0.23 

valid for the two-dimensional bed or into the form 

Li Z 
— = 1 (36) 
L 1.20Z + 0.35 

valid for the three-dimensional bed. 
The experimental values of Li/La obtained with fluidized beds in the systems water — 

— particles and air—particles are compared according to equations (35) and (36) in Fig. 3. 
(The experimental values of Li/La or Xi/Xmax obtained for the system air—particles 
were smoothed according to equations in Table 2.) 

According to Pyle and Harrison [8] the theoretical curve Li/L — i(Z) at a certain 
value of Z represents the mean or at least the minimum height of bed, L, or the maximum 
value of the relative expansion of bed, Li/L. As obvious from Fig. 3, this theoretical 
prediction disagrees with the facts observed. For the fluidized systems water—particles 
the values of Li/L& are much lower over the whole range of the Z values or the values L& 
are much higher than theoretically assumed. The disagreement between the theoretical 
prediction and the experimental results decreases with increasing value of Archimedes 
number Ar. 

In the fluidized systems air—particles where the fluctuation of the bed height was 
observed visually just above the incipient fluidizing velocity, the agreement between 
the values of Li/L postulated by theory and those obtained experimentally was better 
than in the case of water-fluidized systems; notwithstanding it was not satisfactory. 
However, it must be emphasized that the assumption of Pyle and Harrison [8] accord­
ing to which the value of Li/L calculated from equations (35) and (36) ought to be at 
least maximum gets entirely refuted. While in systems fluidized by water the experi­
mental value of Li/La approaches the theoretical value of Li/L with increasing value 
of Ar (Z = const), in the air-fluidized systems the experimental value of Li/La falls 
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0 0.1 0.2 0.3 0Л 2 

Fig. 3. Comparison of the measured values of Li/La in the systems water —particles 
and air —particles with the theoretical values of LJL according to ľyle and Harrison [8] 

in dependence on the dimensionless complex Z defined by equation (34). 
Al — Au and Bl — Bi — denotation of the samples of particles; 

— — — — — graphical representation of equations (3-5) and (36); 
experimentally observed boundary between uniformly (on the left side 

of line) and nonuniformly (on the right side of line) fluidized beds in the system water — 
— particles. 

back from the theoretical value with increasing value of Ar. It is obvious that the dis­
agreement in the systems air —particles would have been even greater if we compared 
the maximum experimental values of Li/Lmin (instead of mean experimental values 
of //i//>a as seen in Fig. 3) with expected theoretical values because the curves Li/Lmin = 
= i(Z) would have been more distant from the theoretical curves Li/L = i(Z). In the 
systems water —particles the situation would have not changed substantially because 
L„.in was only little different from L a . 

According to the existing knowledge and our considerations [9] concerning two kinds 
of disturbance forces which cause the nonuniformity of fluidized beds the two-phase 
model of Pyle and Harrison may be evaluated «is follows. 

1. In the nonuniformly fluidized systems fluid —particles equations (1) and (2) are 
not valid; that means that the basic concept of the two-phase model is not correct. 
Equations (3 — 5) do not express the physical reality and equation (6) cannot be in 
force. 

The apparent parametric dependence of Li/L = i(Z) on Ar which seems to exist 
according to Fig. 3 may be explained on the basis of the statement of several authors 
that for the ratio ut/ivi = a the value of a decreases with increasing value of Ar in a certain 
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fairly wide interval of Archimedes n u m b e r s (which includes t h e series of our measure­
ments) . Hence 

U\ — ll'i = lľi(0í — 1), 

or 
z ^ ^ ( Q C - l ) 

(gD)°-'° 

where a m a y depend on Archimedes n u m b e r . I n addi t ion, for particles of certa in shape 
t h e q u a n t i t y depends on @f, ju, d, a n d Ar a n d for this reason for D = const Zmax 

depends on Qf, //, d, a n d Ar. Generally, Z can change in t h e interval Z e ( 0 ; Z m a x ) b u t 
irrespective of t h e values Z m a . \ , Li/La assumes t h e values from t h e interval <0; 1>. 
Therefore for higher values Z n i a x a t D = const a less steep slope of t h e function Li/La. = 
— f(Z) h a s t o be expected for t h e sys tem water —part ic les in conformity wi th Fig. 3. 

I n t h e sys tem air —part icles (at low pressures) different course [9] has t o be expected 
because t h e interval of t h e values Li!La is differently l imited, i.e. v; -> ut does n o t hold 
provided Li/La -> 0. 

2. Let us a d m i t t h a t for t h e systems gas —part icles (at low pressures) the basic concept 
of t h e nonuniformly fluidized bed according t o two-phase model is correct, i.e. equat ions 
(7) a n d (2) are valid. ( I t is difficult t o provide a direct exper imenta l evidence of t h e 
accuracy of these e q u a t i o n s ; th is hypothes is has been ne i ther confirmed nor refuted 
u p t o now.) T h e n it follows from Fig. 3 t h a t equat ions (3 — 5) are n o t correct a n d t h e 
prob lem of a successful two-phase model a p p e a r s as a problem of a correct definition 
of t h e rising velocity of bubbles иъ. I n this sense, a t t e m p t s t o refine this model should 

be m a d e . 

Symbols 

Ar = [g d*[gp — QÍ) £>f] ju~2 — Archimedes n u m b e r 
<7,, o* pa ramete r s in equat ion (8) 

ft,, b2 pa ramete r s in equat ion (9) 

d d iameter or effective d iameter of part icle 
D inner d iameter of column 
g acceleration due to gravi ty 

K dimensionless coefficient in equat ion (3) 

L bed height 

bmax, £min m a x i m u m and m i n i m u m height of t he nonuniformly fluidized bed observed 
after a sufficiently long t ime interval unde r constant condit ions 

L0 = 4m J Ti D2 gp — height of compact bed of particles 
Li bed height a t incipient fluidization 
La average bed height defined b y equat ion (7) 

m mass of the sample of part icles 
Q t o t a l flow-rate of fluid th rough the bed 
Qb flow-rate of fluid t h rough the bed in bubble phase 
Qi value of Q a t incipient fluidization 
Be = wd Of JU'1 — Reynolds n u m b e r 
Eeci = 0.0157 Л?-0-698 + 0.400 - t h e first critical Reynolds n u m b e r 

7?eC2 = 0.192 ^b-o.048 _ \ QQ _ t h e second critical Reynolds n u m b e r 

i?eClmax Reynolds n u m b e r character iz ing t h e b r e a k of t h e curve log [Lmax/-£0] — 
= f (log Ее) 
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-Rec,min Reynolds n u m b e r character iz ing t h e break of t h e curve log [Х т1п/£0] = 
= f (log Re) 

i?ec,a Reynolds n u m b e r character iz ing t h e break of t he curve L&/L0 = i(Re) 

Rei = w\d Qt u'1 — Reynolds n u m b e r a t incipient fluidization 
S cross section of co lumn 

Ubi rising velocity of a separa te bubble in t he vicini ty of t h e incipient fluidiza­
t ion 

tit t e rmina l velocity of separa te par t ic le in viscous m e d i u m 
w superficial fluid velocity in t he column 
Wb superficial fluid velocity in bubble phase 
Wi incipient fluidizing velocity 

Z dimensionless complex defined b y equa t ion (34) 

Zmax dimensionless complex defined b y equa t ion (38) 

a ra t io ut/wi 

H dynamic viscosity of fluid 
gt densi ty of fluid 

QP densi ty of part icles 
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