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The values of relative expansions found experimentally in the systems
water —particles and air—particles were compared with the equations for
theoretical relative expansion derived by Pyle and Harrison [8] on the
basis of two-phase model of nonuniformly fluidized beds. A disagreement
between theoretical equation and visual observation appears.

During the last 20 years a number of researchers studied fluidized beds; so far they
have not succeeded in developing a satisfactory hydrodynamic model. Recently the
so-called two-phase model of nonuniformly fluidized beds attracted attention. It is
based on visual observation as well as on the measurements of physical characteristics
of beds by capacitance technique and by optical, X-rays, and radioisotopic methods.
These measurements were performed by several authors, namely Morse and Ballow [1],
Dotson [2], Toomey and Johnstone [3], Romero and Johanson [4], Lanneaw [5], Baum-
garden and Iigford [6], Harrison, Daridson, and de Kocl: [7] et al.

The concept of a nonuniformly fluidized bed according to two-phase model may be
expressed as follows. A nonuniformly fluidized bed consists of two regions:

a) a dense suspension which is often denoted improperly as a continuous phase or
dense phase;

b) a dilute suspension which is often denoted improperly as a dilute phase.

The flow-rate of fluid through the dense suspension equals the flow-rate through
the bed at the incipient fluidizing velocity Qi. The remainder of fluid Qv exceeding the
incipient fluidizing velocity volume flow passes through the bed discontinuously as
bubbles and produces a dilute suspension. The total flow-rate of fluid @ may then be
oxpressed by the relationship

Q = Qv+ Q. ()
By dividing this equation by the cross section of column S we obtain
w = wy + wi, (2)

where w is the superficial velocity of fluid in the column, w, is the velocity of fluid (re-
ferred to the cross section of column) flowing in bubbles, and w«; is the incipient fluidizing
velocity.
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The equation (I) has to be considered an unverified hypothesis which defines Qp.
This definition of Qp from which the definition of wy according to the equation (2) ensues
is a generally accepted hypothesis of the two-phase model.

However, the solution of individual problems requires the introduction of further
independent quantities and their definitions which would enable to get different modi-
fications of the two-phase model as well as various adequate relationships among the
quantities. For instance, the volume of bubbles in bed is of importance for expressing
the height L of nonuniformly fluidized bed. This volume may be determined if the rising
velocity of bubbles in bed 5 is known. On the basis of incomplete experimental knowl-
edge Pyle and Harrison [8] put

Up = Upi + K wy, (3)

where the dimensionless coefficient K assumes the values 1.00 and 1.20 for a two- or
three-dimensional bed, respectively. The symbol wp; stands for the rising velocity of
separate bubble through the bed in the proximity of the incipient fluidization which
depends merely on the acceleration due to gravity g and the inner diameter of column D;
for two- or three-dimensional bed the velocity is given by

upy = 0.23(g D)0, (4)
or
up; = 0.35(g D)°-3, (5)

respectively.
Assuming that all bubbles are of equal size (and move with the same velocity), the
subsequent equation ensues from equations (I—35) for expansion

Li w — Wi
— =1 . (6)
L Kw — w; — upi

Since according to the authors [€] the bubbles are of different size and move with different
rising velocity while the equations (3—5) define the maximum velocity, the quantity L
in equation (6) represents the minimum value of the bed height.

On the basis of graphical comparison of the theoretical expansions according to equa-
tion (6) with the values presented by Pyle and Harrison [8] it is not possible to judge
objectively the accuracy of the two-phase model because the authors give no data con-
cerning the method of measurement, the kind of fluid used, the parameters of particles,
elc.

The comparison of our experimental values found for the systems water—particles
and air—particles with equation (6) gives a new approach to the accuracy of the assump-
tions of Pyle and Harrison [8].

Experimental

The measurements were carried out with systems water—particles (glass column
0.01148 m in diameter; height 1.01 m; brass grid; screened glass Ballotini; fractions
ranging from 1.260 to 21.45 X 10~4m in diameter) and air—particles (perspex glass
column of inner diameter 0.1101 m; height 1.55 m; screened glass Ballotini; fractions
from 1.265 to 4.424 X 10-¢m). The characteristics of the particles used are given in
Table 1.
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Table 1

Denotation and characteristics of the samples of the used glass particles

Density
Sample Effective diameter of particles Archimedes Fluidization
ramp of particles d - 104 Op number liquid
[m] [kg/m?] Ar
A, 1.260 2778.0 30 water
4, 2.130 2726.0 168 water
A, 4.650 2744.0 1613 water
Ay 6.110 2729.9 21758 water
A 11.48 2737.0 20 810 water
Ag 21.45 2572.0 135 000 water
B, 1.265 2615.3 197 air
B, 1.528 2624.9 350 air
B, 2.078 2684.3 908 air
B, 4.424 2697.9 8 955 air

The nonuniformly fluidized beds manifest themselves [9] by the fluctuation of the
expanded bed height between Lmax and Lmin. In a sufficiently long time interval of
observation T' (5 minutes) these boundary values are fairly reproducible. The heights
Lmax and Lpin were measured visually by means of a sliding paper strip. From the
measured values the average height of expanded bed L, was calculated as an arithmetic
mean

_ Lmax + Lmin

L, (7)

9

<

In systems fluidized by air the beginning of the fluctuation of the bed height was
observed immediately above the incipient fluidizing velocity.
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I{g. 1. Experimental dependence of the relative maximum (Lmax/L,) and minimum
(L. in/1y) height of fluidized bed on Reynolds number (Re) for the system air— particles
at various sample weights m of the particles B,.

m = 1.50kg; © m = 2.00kg; @ m = 2.50kg; m m = 4.00kg; 2 incipient fluidizing
velocity.
graphical representation of equations (16), (17), (18), and (19); Table 2.
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I'ig. 2. Experimental dependence of the relative mean height (L./L,) of fluidized bed
on Reynolds number (Re) for the system air—particles at various sample weights m
of the particles B,.
om = 150kg; m=2.00kg; @ m = 2.50kg; m m = 4.00 kg; incipient fluidizing
velocity.

-—— graphical representation of equations (20) and (21); Table 2.

Figs. 1 and 2 show the results of measurements obtained with the system air— particles
for a sample of particles B, as relationships

IOg [Llllle/Lu] = f (lOg Re).
log [Lmin/L,] = f (log Re)
or La/Ly == £ (Re),

where L, is the height of compact bed of particles.

Similar results were obtained also with the samples of particles B,. B,. and /»,. It
is worth noticing that the values Lmax/Ly, Lmin/L,. and Ly/L, are practically independent
of the weight of particles 7 or L,. From the distribution of points in Figs. 1 and 2 it
may be concluded that these relationships change abruptly which may be expressed
by two power equations of the type

logy = loga, a,loga (8)

for the relationships

log [Lmax/Le] == f (log Re)
and

log [Lmin/L,] = £ (log Re)

or by two linear equations of the type

y=0b,+ b, 9)
for the relationship
L,/L, = f (Re).

The values of the parameters a,. a., b,, and b, for individual series of measurements
which were calculated as arithmetic means or by the method of least squares are given in
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Table 2

Results of mathematical evaluation of the measurements in the system air— particles

Sample B, B, By B,
Ar = 197 350 908 8955
p— .0205 4 0.0280 0,0397 0,0493
o |Rasme= Lunin/Ly = 1.76 Re?-020 1.73 Re 1.71 Re 1.58 Re
&  |=Eecmin | gguation (10) (16) (22) (28)
G
Il
5 Ree.mm = 1.56 1.94 4.11 9.92
=
j s Lmin/Ly = 1.48 Revant 1.36 Reo-397 0.866 Re0-523 0.691 Reo-09
> Recmin| Equation (11) (17) (23) (29)
Re; < Lmax/Ly = 1.83 Re?.0373 1.82 Re0.0597 1.76 Re0-0773 1.56 Re0.0800
< <Re<
&  |<Recmax | Equation (12) (18) (24) (30)
G
I
5 Ree,max = 0.731 0.975 1.52 6.42
5
j-’ . Luax/Ly = 2.08 Re0-450 1.84 Rev-450 1.50 Re?-457 0.506 Re?-%67
> Ree,max Equation (13) (19) (25) (31)
Rey < LyjL, = 1.71 + 0.0975 Re 1.70 + 0.0773 Re 1.67 + 0.0810 Re 1.72 4 0,00054 Re
—_ < Re<
& [<Reca Equation (14) (20) (26) (32)
S
I | Reca = Rec,max = 0.731 0.974 1.52 6.42
IS
5 Re > Ly = 1.45 + 0.469 Re 1.46 + 0.362 Re 1.44 + 0.228 Re 1.07 + 0.101 Re
> Ree, Equation (15) (21 (27 (33)
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equations (19— 33) in Table 2. The relationships according to the equations in Table 2 are-
drawn as full lines in Figs. 1 and 2 and correspond to the sample of particles fs,.

The values of Reynolds numbers at which the break appears according to Figs. 1
and 2 are denoted Rec,maxs Réc,min, Kec,a and increase with the value of the number-
Ar. In our experiments Ar € (197; 8955); therefore no profounder quantitative conclu-
sions concerning this relationship may be drawn.

In systems fluidized by water the beginning of the fluctuation of the bed height was
always observed visually in the so-called transition region of flow which is limited by
the interval Re., < Re <. Rec,, Re.; and Re., being the first and the second critical
Reynolds number according to Benc et al. [10].

Discussion
By inserting from (£) or (J) into (6) and introducing a dimensionless complex Z
w —
7z =——— (34):
(g Dyo-s
eqination (6) may bhe transformed either into the form
Ly Z

=1- = (35)
L 1.00 Z + 0.23

valid for the two-dimensional bed or into the forin

L; Y/
=1 (36).
L 1.20 Z + 0.35

valid for the three-dimensional bed.

The experimental values of L;j/L, obtained with fluidized beds in the systems water —
— particles and air— particles are compared according to equations (35) and (36) in Fig. 3.
(The experimental values of Lij/La or Lji/Lmax obtained for the system air— particles.
were smoothed according to equations in Table Z.)

According to Pyle and Harrison [8] the theorvetical curve L;/L == f(Z) at a certain
value of Z represents the mean or at least the minimum height of bed, L, or the maximum
value of the relative expansion of bed, Li/L. As obvious from Fig. 3, this theoretical
prediction disagrees with the facts observed. For the fluidized systems water — particles.
the values of L;i/L, are much lower over the whole range of the Z values or the values L,
are much higher than theoretically assumed. The disagreement between the theorctical
prediction and the experimental results decreases with increasing value of Archimedes
number _dr.

In the fluidized systems air—particles where the fluctuation of the bed height was
observed visually just above the incipient fluidizing velocity, the agreement between
the values of L;/L postulated by theory and those obtained experimentally was better
than in the case of water-fluidized systems; notwithstanding it was not satisfactory.
However, it must be emphasized that the assumption of Pyle and Harrison [8] accord-
ing to which the value of L;/L calculated from equations (35) and (36) ought to be at
least maximum gets entirely refuted. While in systems fluidized by water the experi-
mental value of L;/L, approaches the theoretical value of L;/L with increasing value
of Ar (Z = const), in the air-fluidized systems the experimental value of L;/L, falls
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Fig. 3. Comparison of the mecasured values of Li/L, in the syvstems water— particles
and air—particles with the theoretical values of Li/L according to Fyle and Harrison [8]
in dependence on the dimensionless complex Z defined by equation (34).

Ad,— A, and B,—B,; — denotation of the samples of particles;
————— graphical representation of equations (35) and (36):

experimentally observed boundary between uniformly (on the left side
of line) and nonuniformly (on the right side of line) fluidized beds in the system water—
— particles.

back from the theoretical value with increasing value of Ar. It is obvious that the dis-
agreement in the systems air—particles would have been even greater if we compared
the maximum experimental values of Li/Lmin (instead of mean experimental values
of Li/La as seen in Fig. 3) with expected theoretical values because the curves Li/Lmin =
= f(Z) would have been more distant from the theoretical curves L;/L = f(Z). In the
systems water—particles the situation would have not changed substantially because
Ly.in was only little different from L,.

According to the existing knowledge and our considerations [9] concerning two kinds
of disturbance forces which cause the nonuniformity of fiuidized beds the two-phase
model of Pyle and Harrison may be evaluated as follows.

1. In the nonuniformly fluidized systems fluid—particles equations (I) and (2) are
not. valid; that means that the basic concept of the two-phase model is not correct.
Equations (3—9) do not express the physical reality and equation (#) cannot be in
force.

The apparent parametric dependence of L;/L = f(Z) on A» which seems to exist
according to Fig. 3 may be explained on the basis of the statement of several authors
that for the ratio «/wi = o the value of « decreases with increasing value of A7 in a certain
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fairly wide interval of Archimedes numbers (which includes the series of our measure-
ments). Hence

w — wi = wi(x — 1), (37)
or
wi(e — 1)
Zmux = “l— ’ (38)
(g Dy-s

where « may depend on Archimedes number. In addition, for particles of certain shape
the quantity depends on g, u, d, and Ar and for this reason for D = const Zpax
depends on gr, u, d, and Ar. Generally, Z can change in the interval Z € {(0; Znax) but
irrespective of the values Zmax, Li/L, assumes the values from the interval (0; 1.
Therefore for higher values Zy.ax at D = const a less steep slope of the function L;/L, =
= f(Z) has to be expected for the system water—particles in conformity with Fig. 3.

In the system air—particles (at low pressures) different course [9] has to be expected
bhecause the interval of the values Li/L, is differently limited, ¢.e. ' - u; does not hold
provided Li/L, - 0.

2. Let us admit that for the systems gas— particles (at low pressures) the basic concept
of the nonuniformly fluidized bed according to two-phase model is correct. i.e. equations
(1) and (2) are valid. (It is difficult to provide a direct experimental evidence of the
accuracy of these equations; this hypothesis has been neither confirmed nor refuted
up to now.) Then it follows from Fig. 3 that equations (3—3&) are not correct and the
problem of a successful two-phase model appears as a problem of a correct definition
of the rising velocity of bubbles up. In this sense, attempts to refine this model should
be made.

Symbols
Ar = [g d*(9p — or) or] u=* — Archimedes number
., 0, parameters in equation (8)
by, b, parameters in equation (9)
d diameter or effective diameter of particle
D inner diameter of column
g acceleration due to gravity
K dimensionless coefficient in equation ()
I bed height

Liax, Lmin  maximum and minimum height of the nonuniformly fluidized bed observed
after a sufficiently long time interval under constant conditions

L, = 4mfn D* g, — height of compact bed of particles

L bed height at incipient fluidization

L, average bed height defined by equation (7)

n mass of the sample of particles

Q total flow-rate of fluid through the bed

Qn flow-rate of fluid through the bed in bubble phase

Qi value of @ at incipient fluidization

Re = wd gor u~! — Reynolds number

Re., = 0.0157 40698 4 0.400 — the first critical Reynolds number

Rec, = 0.192 470-548 — 1.00 — the second eritical Reynolds number

Ree max Reynolds number characterizing the break of the curve log [Lmax/L,] =
= f (log Re)
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Rec,min Reynolds number characterizing the break of the curve log [Lmin/L,] =
= f (log Re)
Rec,a Reynolds number characterizing the break of the curve Li/L, = f(Re)
Re; = wid gr u=* — Reynolds number at incipient fluidization
8 cross section of column
Upi rising velocity of a separate bubble in the vicinity of the incipient fluidiza-
tion
Uy terminal velocity of separate particle in viscous medium
w superficial fluid velocity in the column
W superficial fluid velocity in bubble phase
wy incipient fluidizing velocity
Z dimensionless complex defined by equation (34)
— dimensionless complex defined by equation (38)
o ratio uyfw;
" dynamic viscosity of fluid
ot density of fluid
op density of particles
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