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Some new relationships have been derived between the enthalpies and 
entropies of melting and mixing of components of binary simple euteetic 
systems, and the slopes of the tangents to the liquidus curves at the euteetic 
points of the corresponding phase diagrams. 

Part one 

Let us consider a binary system A + B, in which an equilibrium exists between 
a solution and a pure solid phase (a simple euteetic system). Let us assume tha t 
this system is under a constant pressure P which is greater than the vapour pres­
sure of this system within the considered temperature interval (a condensed sys­
tem). The condition for the thermodynamic equilibrium for each component (sub­
stance) can be written as 

lr^(T)P = p\(T, xjp . (1) 

In equation (I), 

fi®-* is the chemical potential of a pure solid component, 
j.i\ is the chemical potential of the same component in a liquid phase which is sa­

turated with respect to this component, 
xi is the concentration in molar fractions of the component under consideration. 

Another condition of the thermodynamic equilibrium is 

d(rf*)p = M)p 
or 

The total differentials in equation (2) may be written as follows 

„0,8 \ я / ,As 

and 

d(Al\ ^±(Щ dT {3) 

(*\=Ц*\ dr + JL(^\ {4) 
\Т/г dT \T JP,Xi dxt \T ]P,T 
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Because of 

and 

we obtain 

±(№\ = -?¥., —i^-\ =-**± 
dT \ T ) P T2 дТ \ T J P,XI T* 

a 
дх. i \ T J P, т \ dXi J P, T 

дх, J j 

, d In a\ \ _., dT, 
RT*[ 1-\ = AHf 1, (5) 

dx. 

where 

a\ is the activity of the liquid substance i in the saturated solution. The reference 
state is the state of the pure undercooled substance i at the same temperature, 

AH1!3 = H\ — Hf3 is the partial molar differential heat of fusion, or the differen­
tial heat of the process of dissolution, of the substance i at the temperature T 

_ ([1], P- 40), 
H\ and H®'3 are the partial molar enthalpy of the substance г in a liquid saturated 

by this substance i9 and the molar enthalpy of the pure solid substance г, respecti­
vely, 

dTJdXi = kt is the slope of the tangent to the liquidus curve of the substance i. 

I t should be stressed t h a t the quantities dTi and dxi in the expression dTi/dxi 
are not mutually independent, i.e., x-b = f(Ti), and vice versa. But the variable Xf 
in the expression (d In ai/8xi)pt т does not depend in general on T, i.e., щ = f (T, Xi)p, 
where T and x t are mutually independent variables. 

Writing down equation (5) for both components A and B, multiplying in the 
first case by x& and in the second by x& and finally substracting, the following 
equation is obtained after rearrangement 

L \ dxA J \ й*в !\r* 
(6) 

For the eutectic point E in a phase diagram it is valid t h a t T = ТЕ, #A + #в = 
= 1. Then t h e Gibbs—Duhem relationship can be applied to the right-hand side 
of equation (6). Thus for the eutectic point E we may write 

(*A * ^ A S • K)E = (*в * л Е ъ ' кв)Е • (7) 

The values of the quantities xA) k x and &в can be taken from the corresponding 
phase diagram (Fig. 1). 

This important relationship which has been derived for the first t ime in 1959 
in a slightly different way by Dodé and Hagege [2] seems to have fallen into an 
undeserved oblivion. I t can be used, e.g., for computing one of the terms 

(AW£)B , (АЩ)Е , 
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Fig. 1. The phase diagram of a simple eutectic system A + B. 
The slopes of the liquidus curves at the eutectic p o i n t s are plotted where 

t g a = (TCA)E, tg ß = (JCB)E. 

if the other is known. But some more important information can be obtained if 
equation (7) is combined with the following equation 

AHf = (xA - AHf)E + (xB • AHf)E . (S) 

In equation (8)> 

AHf is the molar enthalpy change for the process "solid-> liquid" at the eutectic 
composition and temperature. Other terms hold their previous meaning. 

(9) 

(10) 

From equation (7) and (8) we obtain 

Hfiffli = — 

•AHf 

-AHf 

Further 

or 

where 

хв ' (^A "b #B) 

AHf = H\- Hf* = (H\ - Я?-1) + (Я?-1 - Hfs) 

(AHf)E = (AHf*)E+(AHfV*)E, (11) 

(AHl™x)E is the partial molar enthalpy of mixing of the substance i at the eutectic 
composition and temperature, 

(АЩ:[,а)Е = (H?'1 — HfB)E is the molar enthalpy change in the process "solid -> 
-> liquid" of the pure substance г at the eutectic temperature TE. 
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Because dAH0^1* = AC°Pf • dT we obtain 

{AHW*)E = AH\ - $AC°Pf • dT (12) 

in which 

AH\ is the molar enthalpy of fusion of the pure substance i at its melting point, T[, 
AC®/'* = Cp'\ — C°ps

ti is the difference between the molar heat capacities of the pure 
liquid and pure solid substance i, respectively. 

Inserting equation (12) into (11) and then (11) into (9) and (10) we easily obtain 
for the component A 

(AHfx)E = ? . AHf - AHA + \AG°//l • dT . (13) 
xA • (kA + kB) J 

тЕ 

Similarly, one obtains for the component В 

(ЛЩ[Х)Е = — AHf - AHB + [АСГРЦ • dT . (14) 
XB ' ("'А "Ь *в) J 

TE 

Part two 

If one takes into account t h a t AHf = T • ASf, where AŠf = S\ — £?'8 is 
the partial molar entropy of fusion of the substance i in a solution saturated by 
i a t T, then equation (7) yields the following relationship which is valid for the 
composition and temperature of the eutectic point E 

(xA • AŠ1* • kA)E = (xB • AŠ1* • kB)E . (15) 

bo be obtained for the first time. 

АЩ* = Щ - £?-8 = (5[ - SV) + (S?.* - S?'s) 

or 

{АЩ*)В = (ABf*)E + (ASf'% , (16) 

where 

(А8^Х)Е is the partial molar entropy of mixing, or the differential entropy of the 
process of dissolution, of the substance i at the eutectic composition and temperature, 

(AS^tl,B)E is the molar entropy change in the process "solid -> liquid" of the pure 
substance г at the eutectic temperature TE. 
Because dASflis = АСР

Л!? • d In T, after some rearrangement we obtain 

This relationship seems to be obtained for the first t ime. 
Further we can write 

(AŠf*)E = ^ • AS"* - ASB + [AC^JÍ - d In T, (17) 
XA ' (kA + кв) J 
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{éSg*)x = ^ AStf - AS^ + [ňCfji • d In T. (18) 
XB ' ("'A "b "'B/ J 

The analogy between equation (13), (14), on the one hand, and (17), (18) on the 
other hand, is obvious. 

A practical application of the derived equations will be considered in a subsequent 
paper. 

Part three 

The relationships (7) and (15) are valid for all simple binary eutectic systems, 
whether ideal or non-ideal. If we only confine ourselves to ideal systems then both 
mentioned equations can be derived in a simpler manner. _ 

For ideal systems it is valid that ax = xi and further, ЛЩ3 = ЛЩл/3, because 
the term AHf[x is equal to zero (see equation (11)). Then the differential equation 
(5) written for the substances A and В of an ideal binary system yiê f.l§. 

1 dT ifiT 

RT* • = AH°/,S . — ^ , , (19) 
[xA dxA 

1 dT 
RT* = АН^Уа . — - . (20) 

xB dxB 

For the same eutectic temperature TE we obtain immediately equation (7) 
and from this, also equation (15). 

The derived equations are valid not only for the equilibrium "solid*-> liquid", 
but — mutatis mutandis — for arbitrary two different phases at equilibrium. 

The author thanks Dr. I. Proks for discussion and critical remarks. 
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