The Synthesis of Some N-Aryl- and N-Benzyl-N'-furfurylthioureas

^aP. KRKOŠKA, ^bA. MARTVOŇ, ^bM. UHER and ^aJ. KOHÚT

*Department of Chemical Technology of Wood, Cellulose and Paper, and

Department of Organic Chemistry, Slovak Technical University, Bratislava 1

Received November 12, 1969

In revised form October 10, 1970

This paper refers to the preparation and infrared spectra of some N-aryland N-benzyl-N'-furfurylthioureas. The title compounds were synthesized by addition of 2-aminomethylfuran and ethyl-5-aminomethylfuroate to phenyl-, benzyl-, 4-tolyl-, 4-chlorophenyl-, 4-bromophenyl- and 4-dimethylaminophenylisothiocyanate.

As reported in previous papers [1, 2], differently substituted derivatives of thiourea are antioxidants and many of them are used as stabilizers of some polymolecular compounds, *e.g.* polyvinylchloride, polyurethanes and others. There are also papers reporting a tuberculostatic effect of various derivatives of thiourea [3, 4].

We have been interested in such thiourea derivatives which possess a substituted furan ring in its molecule; this ring easily undergoes oxidation and, as a result, enhanced antioxidation properties of the synthesized thioureas can be anticipated. The introduction of a furan ring into the molecule of substituted thioureas can be reflected in the increase of the tuberculostatic effect since a wide spectrum of biological activity of furan derivatives has been described [5, 6]. Thus, *Nazarova* and *Gach* [7, 8] reported a more intense biological activity of thioureas with a substituted furan ring, the substituent in α -position being also of importance.

We synthesized some N-aryl- and N-benzyl derivatives of N'-furfurylthiourea when reacting p-substituted phenyl- and benzylisothiocyanates with 2-aminomethylfuran and ethyl-5-aminomethylfuroate.

Isothiocyanates were prepared from the proper amines by thiophosgene method [9, 10], ethyl-5-aminomethylfuroate from ethyl-5-chloromethylfuroate and hexamethylenetetramine in absolute ethanol according to Delephine method [11].

From the results listed in Table 1 it follows that the highest yields of thiourea derivatives were obtained when using aromatic isothiocyanates with desactivating substituents (chloro derivative 81%, bromo derivative 82%) what is in accordance with the nucleophilic addition of amine to isothiocyanate. Yields are lower when an activating substituent is present (dimethylamino derivative 65%). Dimethylamino group increases the electron density of the -NCS group by its strong activation effect, thereby lowering its reactivity in nucleophilic addition to an amine.

Derivatives 5 and 11 were used to stabilize wool towards thermooxidation; the latter was found to be of better, the former of weaker antioxidation effect when compared with that of thiourea [12].

The examined derivatives of thiourea are characterized in their infrared spectra by $\nu(N-H)$ at 3400 cm⁻¹ these being associated to a considerable extent, further by the band of pulsation vibration of the furan ring at 1017-1021 cm⁻¹ and substances 7-12 also by a very strong band $\nu(C=O)$ at 1730-1720 cm⁻¹.

Experimental

Infrared spectra of substances under investigation were recorded with a double-beam UR-10 spectrophotometer (Zeiss, Jena), in the $3600-700 \text{ cm}^{-1}$ region in NaCl cells of 0.41 mm thickness as 0.025 M solutions in carbon tetrachloride. Melting points were determined on a Kofler micro hot-stage.

Table 1

Characteristics of the synthesized thiourea derivatives

	$R^1-NH-CS-NH-CH_2-OR_2$									
No.	R1	Molecular formula	M	Calculated/found			Yield	М.р.		
				% C	%Н	% N	[%]	[°Ċ]		
	$R^2 = H$									
1	phenyl	$\mathrm{C_{12}H_{12}N_2OS}$	232.3	$\begin{array}{c} 62.04\\ 62.12\end{array}$	$5.20 \\ 5.08$	$12.06 \\ 12.38$	73	131ª		
2	benzyl	$\mathrm{C_{13}H_{14}N_{2}OS}$	246.3	$63.38 \\ 63.51$	$5.17 \\ 5.23$	$11.37 \\ 11.35$	68	80ª		
3	4-chlorophenyl	$C_{12}H_{11}ClN_2OS$	266.7	$\begin{array}{c} 54.02\\ 53.76\end{array}$	$\begin{array}{c} 4.15 \\ 4.08 \end{array}$	$10.50 \\ 10.38$	81	119ª		
4	4-bromophenyl	$\mathrm{C_{12}H_{11}BrN_2OS}$	311.1	$\begin{array}{r} 46.31 \\ 46.05 \end{array}$	$\begin{array}{c} 3.56 \\ 4.05 \end{array}$	9.00 8.95	82	120ª		
5	4-tolyl	$C_{13}H_{14}N_2OS$	246.3	$\begin{array}{c} 63.38\\ 63.41 \end{array}$	$\begin{array}{c} 5.17 \\ 4.94 \end{array}$	$11.37 \\ 11.60$	70	1724		
6	4-dimethylaminophenyl	C14H17N3OS	275.4	61.0 6 59.70	6.22 6.39	15.26 15.31	65	140ª		
	$R^2 = COOC_2H_5$	· · · · · · · · · · · · · · · · · · ·				a da kara da				
7	phonyl	$\mathrm{C_{15}H_{16}N_2O_3S}$	3 04.4	$59.18 \\ 59.40$	$5.29 \\ 5.33$	9.20 9.38	71	1166		
8	benzyl	$\mathrm{C_{16}H_{18}N_2O_3S}$	318.4	$\begin{array}{c} 60.35\\ 60.12 \end{array}$	$5.69 \\ 5.73$	8.79 9.08		89¢		
9	4-chlorophenyl	$\mathrm{C_{15}H_{15}ClN_2O_3S}$	338.8	$53.17 \\ 53.29$	$4.46 \\ 4.18$	8.26 7.98	85	1250		
10	4-bromophenyl	$\mathrm{C_{15}H_{15}BrN_{2}O_{3}S}$	383.6	$\begin{array}{r} 47.00\\ 46.62 \end{array}$	$3.94 \\ 4.05$	7.30 7.29	85	126 ^b		
11	4-tolyl	$C_{16}H_{18}N_2O_3S$	318.4	$\begin{array}{c} 60.35\\ 59.91 \end{array}$	$5.69 \\ 5.47$	8.79 8.66		101¢		
12	4-dimethylaminophenyl	$C_{17}H_{21}N_3O_3S$	347.4	$\begin{array}{c} 58.76 \\ 58.53 \end{array}$	$6.09 \\ 6.17$	$\begin{array}{c} 12.09\\11.81 \end{array}$	67	136ª		

Crystallized from a) methanol, b) ethanol, c) ether, d) chloroform.

No.	Infrared spectra [cm ⁻¹]							
	$\nu(N-H)$	varom.(C-H)	$v_{aliph.}(C-H)$	$\nu(C=O)$	$\nu(C=C)$	$\nu(C=S)$	****	
	Ň	3180 vw			1602 w			
	3423 m	3071 vw	2933 w		1534 s	$1458 \mathrm{m}$		
1	3409 m	3039 vw	2960 w		1504 vs	1077 m	1017 n	
					1605 w			
					1580 vs			
	3418 s	3 070 s	2930 m		1540 vs	1470 s	1033 n	
2	3410 infl	3050 s	2880 m		1515 vs	1085 s	1017 s	
		3190 m						
		3160 m			1605 w			
		3100 w	2945 w		1540 vs	1465 vw		
3	3412 s	3000 m	2880 w		1510 vs	1085 vs	1018 s	
					1605 vw			
		3050 w	2930 w		1540 vs	1465 vw		
4	3412 s	3000 w	2880 w	—	1510 vs	1085 s	1019 s	
					1495 s			
	3430 m	3190 vw	2930 m		1605 vw	1465 w		
5	3410 m	3140 vw	2860 w		1535 vs	1085 m	1019 s	
6			2930 vw					
	3435 vw	3190 vw	2865 vw		1540 vs	1455 vw		
	3 405 m	2990 vw	2815 m	-	1490 vs	1085 m	1018 s	
					1603 w			
	3422 m	2989 w			1529 vs			
7	3410 m	2985 w	2946 vw	1727 s	1504 s	1456 w	1020 m	
		3070 vw			1603 w			
		3039 vw		1727 s	1537 vs	1458 w		
8	3380 m	2989 w	2941 w	1710 vs	1503 w	1080 w	1019 m	
					1601 vw			
					1531 vs	1453 vw		
9	3414 m	2990 w	2942 vw	1731 vs	1499 vs	1094 m	1019 m	
					1600 vw	1456 w		
	3414 vw		2941 vw		1532 s	1098 w		
10	3338 w	2993 vw	2912 vw	1730 s	1498 s	1076 s	1020 s	
					1603 w			
	3424 m	3040 vw	2940 w		1523 vs	1452 w		
11	3409 m	2989 w	2875 vw	1727 vs	1484 m	1098 vw	1021 n	
	3425 m		2945 w			1450 w		
	34 00 m	3185 w	2910 w			1096 w		
12	3360 m	2989 m	2816 w	1724 s	1615 w	1069 vw	1019 m	

Table 1 (Continued)

vs - very strong, s - strong, m - medium, w - weak, vw - very weak.

The preparation of N, N'-disubstituted thioureas

A 0.02 mole of phenyl-, benzyl-, 4-chlorophenyl-, 4-bromophenyl-, 4-tolyl- and 4-dimethylaminophenylisothiocyanate, respectively, in ethanol (50 ml) was placed into a three-necked flask provided with a reflux condenser. During 5 minutes a 0.02 mole solution of 2-aminomethylfuran, or ethyl-5-aminomethylfuroate in ethanol (50 ml)was added from a dropping funnel while stirring and the reaction mixture was then heated on a steam bath for 1/2-1 hour. Ethanol was distilled off under diminished pressure and the precipitate was purified by crystallization from methanol, ethanol, ethanol, ether or chloroform (Table 1).

References

- 1. Rybár A., Antoš K., Kristián P., Mašek J., Martvoň A., Chem. Zvesti 20, 826 (1966).
- Martvoň A., Antoš K., Rybár A., Kristián P., Mašek J., Zborník prác Chemickotechnologickej fakulty SVŠT. (Collection of Communications, Section Chemistry, Slovak Technical University.) P. 45. Bratislava, 1968.
- 3. Oeriu S., Uolnescu M., Wexlersi B., Jloler E., Stud. Cercet. Chim. 6, 155 (1958).
- Kalamár J., Horák F., Schwartz E., Zborník prác Chemickotechnologickej fakulty SVŠT. (Collection of Communications, Section Chemistry, Slovak Technical University.) P. 139. Bratislava, 1968.
- 5. Mndžojan A. L., Biologičeskije svojstva chimičeskich sojedinenij, p. 147. Izdateľstvo Akad. Nauk Arm. SSR, Jerevan, 1962.
- Giller S. A., Furacylin i opyt jego primenenija. Izdateľstvo Akad. Nauk Latv. SSR, Riga, 1953.
- 7. Gach G. I., Nazarova Z. N., Ž. Obšč. Chim. 30, 2183 (1960).
- 8. Nazarova Z. N., Gach G. I., Ž. Obšč. Chim. 32, 2548 (1962).
- 9. Dyson G. M., George H. J., J. Chem. Soc. 125, 1702 (1924).
- Tietze E., Houben-Weyl, Methoden der organischen Chemie, Vol. 9, p. 875. Georg Thieme Verlag, Stuttgart, 1955.
- Mndžojan A. L., Dovlatjan V. V., Sintezy geterocykličeskich sojedinenij, Vol. 2, p. 9. Izdateľstvo Akad. Nauk Arm. SSR, Jerevan, 1957.
- 12. Michlik I., Klinger T., Setnička A., Krkoška P., Blažej A., Text. Res. J. 40, 484 (1970).

Translated by Z. Votický