Likvidus kryolitového uhla sústavy Na₃AlF₆—Al₂O₃—Na₂SO₄

K. MATIAŠOVSKÝ, M. MALINOVSKÝ

Ústav anorganickej chémie Slovenskej akadémie vied, Bratislava

Katedru anorganickej technológie Slovenskej vysokej školy technickej, Bratislava

Sledoval sa vplyv Na₂SO₄ na teplotu primárnej kryštalizácie tavenín sústavy Na₃AlF₆—Al₂O₃ a na rozpustnosť Al₂O₃ v kryolite. Zostrojil sa fázový diagram sústavy Na₃AlF₆—Na₂SO₄ a likvidus kryolitového uhla sústavy Na₃AlF₆—Al₂O₃—Na₂SO₄. Zistilo sa, že síran sodný znižuje teplotu primárnej kryštalizácie kryolitu a značne znižuje rozpustnosť Al₂O₃ v tavenine.

Elektrolyt na výrobu hliníka obsahuje popri hlavných zložkách Na_3AlF_6 a Al_2O_3 , prípadne ďalších zložkách, pridávaných zámerne na zlepšenie jeho fyzikálnochemických a elektrochemických vlastností (AlF_3 , CaF_2 , MgF_2 atď.), aj prímesi, ktoré sa do taveniny vnášajú so surovinami a v dôsledku postupného nahromadenia môžu nepriaznivo ovplyvniť uvedené vlastnosti a tým aj samotný proces elektrolýzy. Jednou z týchto látok je síran sodný. Je preto potrebné určiť, do akej miery je prítomnosť síranu v elektrolyte škodlivá pre normálny priebeh elektrolýzy. Tento problém je obzvlášť aktuálny v tom prípade, ak sa používa kryolit, pripravený zo zachytených exhalátov pri výrobe hliníka. Kryolit, pripravený alkalickou sorpciou, obsahuje 3—6 % Na_2SO_4 , ktorý možno len čiastočne odstrániť vymývaním.

V tejto časti práce sa zostrojil likvidus kryolitového uhla sústavy Na_3AlF_6 — $-Al_2O_3$ — Na_2SO_4 . Cieľom bolo určiť vplyv Na_2SO_4 na teplotu primárnej kryštalizácie tavenín základnej sústavy Na_3AlF_6 — Al_2O_3 a na rozpustnosť Al_2O_3 v kryolite.

Z dvojzložkových sústav ohraničujúcich koncentračný trojuholník sledovanej sústavy preštudovala sa sústava Na_3AlF_6 — Al_2O_3 [1, 2, 6, 8] a sústava Na_3AlF_6 — Na_2SO_4 [3]. Sústava Na_2SO_4 — Al_2O_3 sa doteraz nesledovala.

Experimentálna časť

Meranie sa uskutočnilo pomocou vizuálnej metódy a termickej analýzy (TA). Použila sa pec vlastnej konštrukcie [4]. Teplota sa merala termočlánkom Pt/PtRh (10 % Rh), nakalibrovaným na b. t. KCl (770,3 °C), NaCl (800,4 °C), Na₂SO₄ (884,7 °C) a K₂SO₄ (1069,0 °C). Na meranie EMN termočlánku sa pri vizuálnej metóde použil milivoltmeter, výrobok Metra Blansko, n. p., trieda presnosti I, pri TA elektrónkový kompenzačný zapisovač eK BT6EN s rozsahom 600—1100 °C.

Pri zostrojovaní likvidusa sústavy sa v oblasti primárnej kryštalizácie Na_3AlF_6 vychádzalo z hodnôt odčítaných z kriviek chladnutia, v oblasti primárnej kryštalizácie Al_2O_3 z hodnôt stanovených vizuálnou metódou, keďže zlomy na krivkách chladnutia, zodpovedajúce primárnej kryštalizácii Al_2O_3 , sú v dôsledku malého tepelného efektu procesu kryštalizácie veľmi nezreteľné. Rozborom chýb sa zistilo, že namerané hodnoty sú v oblasti primárnej kryštalizácie kryolitu zaťažené chybou ± 5 °C, v oblasti primárnej kryštalizácie $Al_2O_3 \pm 10$ °C.

Fázové zloženie v sústave Na_3AlF_6 — Na_2SO_4 sa overilo pomocou röntgenovej fázovej analýzy. Pracovalo sa práškovou metódou. Použil sa röntgenový difraktograf URS-50 I s medenou antikatódou.

Chemikálie

Síran sodný p. a., výrobca Lachema, n. p., Brno.

Kysličník hlinitý zn. "čistý", výrobca ZSNP, Žiar nad Hronom. Obsah Al_2O_3 99% (podľa analýzy výrobcu).

Fluorid sodný p. a., výrobca Spolek pro chemickou a hutní výrobu, n. p., Ústí nad Labem. Pyrohydrolytickou metódou [7] sa stanovil obsah 45,05 % F.

Sublimovaný fluorid hlinitý, pripravený podľa [5], s obsahom 99,5 % AlF₃.

Kryolit sa pripravil stavením NaF a AlF₃ v stechiometrickom pomere.

Preštudovali sa hraničné dvojzložkové sústavy a zostrojili sa fázové diagramy sústav Na₃AlF₆—Al₂O₃ a Na₃AlF₆—Na₂SO₄. V sústave Na₃AlF₆—Al₂O₃—Na₂SO₄ sa preštudovala oblasť, ktorá zložením zodpovedá elektrolytu na výrobu hliníka. Ako hraničné koncentrácie zložiek sa určili koncentrácie 18 % Al₂O₃ a 20 % Na₂SO₄. V koncentračnom trojuholníku sústavy sa zostrojili dve skupiny priamkových rezov II. druhu. Rezy prvej skupiny sú totožné s izokoncentrátami 3, 6, 18 % Al₂O₃, rezy druhej skupiny zodpovedajú izokoncentrátam 2, 4, 6, 8, 10, 15 a 20 % Na₂SO₄ (všetky koncentrácie sú udané vo váh. %). Sledovali sa vzorky, ktorých figuratívne body zodpovedajú priesečníkom týchto dvoch skupín rezov.

Výsledky a diskusia

Zostrojený fázový diagram sústavy Na_3AlF_6 — Al_2O_3 je zhodný s fázovým diagramom v našej predchádzajúcej práci [6]. Fázový diagram sústavy

Na₃AlF₆—Na₂SO₄, zostrojený na základe nameraných hodnôt (obr. 1), je v dobrom súlade s diagramom v práci K. Grjotheima [3]. Zloženie eutektika

86 % váh. Na₂SO₄ (90,8 mol. %) a teplota eutektickej kryštalizácie 794 °C sú prakticky totožné s údajmi 91 mol. % Na₂SO₄ a 798,6 °C v práci [3]. Vyhodnotením kriviek chladnutia sa potvrdilo, že vo fázovom diagrame vystupuje rozsiahla oblasť tuhých roztokov Na₂SO₄ v kryolite. Na strane Na₂SO₄ kryštalizuje čistý síran sodný. Tento charakter diagramu sa potvrdil aj pri röntgenovej fázovej analýze. Zistilo sa, že pri teplote eutektickej kryštalizácie je hranica existencie tuhého roztoku pri ca 80 % Na₂SO₄. Vznik tuhých roztokov môže byť príčinou, prečo sa z kryolitu pripraveného z exhalátov nemôže vymývaním vodou kvantitatívne odstrániť síran sodný.

Pri štúdiu sústavy Na_2SO_4 — Al_2O_3 sa sledovali vzorky s obsahom 0,2, 0,5, 1, 2 a 3 % Al_2O_3 . Zistilo sa, že táto sústava je charakterizovaná úplnou vzájomnou nerozpustnosťou zložiek.

Likvidus kryolitového uhla koncentračného trojuholníka sústavy Na₃AlF₆— $-Al_2O_3$ —Na₂SO₄ (obr. 2) tvoria dve oblasti primárnej kryštalizácie Na₃AlF₆ a Al₂O₃, ktoré sa stýkajú na čiare sekundárnej kryštalizácie Na₃AlF₆ + Al₂O₃. Z diagramu je zrejmé, že Na₂SO₄ znižuje teplotu primárnej kryštalizácie kryolitu. Na druhej strane pri zvyšovaní koncentrácie Na₂SO₄ sa znižuje rozpustnosť Al₂O₃ v tavenine, pričom relatívne zníženie rozpustnosti kysličníka. hlinitého je väčšie, ako by zodpovedalo pravidlu aditivity.

Na experimentálnej časti práce sa zúčastni! M. Sahaj, diplomant Katzdry anorganickej lechnológie SVŠT. Röntgenovú fázovú analýzu urobili inž. I. Kaprálik a K. Gericher z laboratória štruktúry ÚACH SAV

ЛИКВИДУС КРИОЛИТОВОГО УГЛА СИСТЕМЫ Na₃AlF₆-Al₂O₃-Na₂SO₄

К. Матиашовски, М. Малиновски

Институт неорганической химии Словацкой академии наук, Братислава

Кафедра неоргалической технологии Словацкого политехнического института, Братислава

Методом ТА и визуалы:ым методом изучена система Na₃AlF₆—Al₂O₃—Na₂SO₄. Была построена диаграмма состояния системы Na₃AlF₆—Na₂SO₄. Подтвердилось, что состав эвтектики 86 % весовых Na₂SO₄, температура эвтектической кристаллизации 794 ± 5°. На диаграмме состояния имеется большая область твердых растворов Na₂SO₄ в криолите. Термическим анализом и рептгеновским фазовым анализом найдено, что при температуре эвтектической кристаллизации граница существования твердого раствора находится, приблизительно, при 80 % Na₂SO₄.

Был пестреен ликвидус криолитового угла системы Na₃AlF₆—Al₂O₃—Na₂SO₄. Найдено, что Na₂SO₄ понижает температуру первичной кристаллизации криолита и понижает раствориместь Al₂O₃ в расплаве.

Preložila T. Dillingerová

LIQUIDUS DES KRYOLITHWINKELS DES SYSTEMS Na₃AlF₆-Al₂O₃-Na₂SO₄

K. Matiašovský, M. Malinovský

Institut für anorganische Chemie der Slowakischen Akademie der Wissenschaften, Bratislava

Lehrstuhl für anorganische Technologie an der Slowakischen Technischen Hochschule, Bratislava

Durch die Methode der thermischen Analyse und durch die visuelle Methode wurde das System Na_3AlF_6 — Al_2O_3 — Na_2SO_4 einem Studium unterzogen. Es wurde das Phasendiagramm des Systems Na_3AlF_6 — Na_2SO_4 konstruiert. Es konnte bestätigt werden, daß die Zusammensetzung des Eutektikums 86 Gew. % Na_2SO_4 ist, die Temperatur der eutektischen Kristallisation 794 \pm 5 °C ist. Im Phasendiagramm tritt ein umfangreiches Gebiet von festen Lösungen des Na_2SO_4 im Kryolith auf. Durch die thermische Analyse und die Röntgen-Phasenanalyse wurde festgestellt, daß bei der Temperatur der eutektischen Kristallisation die Existenzgrenze der festen Lösung bei ca. 80 % Na_2SO_4 liegt.

Es wurde der Liquidus des Kryolithwinkels des Systems Na_3AlF_6 — Al_2O_3 — Na_2SO_4 konstruiert. Es wurde festgestellt, daß Na_2SO_4 -die Temperatur der primären Kristallisation des Kryoliths erniedrigt und die Löslichkeit des Al_2O_3 in der Schmelze herabsetzt.

Preložil K. Ullrich

LITERATÚRA

- 1. Abramov G. A., Vetukov M. M., Gupalo I. P., Kostukov A. A., Ložkin L. N., *Teoreti*českije osnovy elektrometallurgii aluminija, 39. Metallurgizdat, Moskva 1953.
- 2. Brynestad J., Grjotheim K., Grönvold F., Holm J. L., Urnes S., Discussions Faraday Soc. 32, 90 (1961).
- 3. Grjotheim K., Can. J. Chem. 37, 1170 (1959).
- 4. Matiašovský K., Malinovský M., Chem. zvesti 14, 258 (1960).
- 5. Matiašovský K., Malinovský M., Plško E., Kubík C., Chem. zvesti 14, 487 (1960).
- 6. Matiašovský K., Malinovský M., Chem. zvesti 14, 551 (1960).
- 7. Matiašovský K., Kubík C., Chem. zvesti 16, 808 (1962).
- Phillips N. W. F., Singleton R. H., Hollingshead E. A., J. Electrochem. Soc. 102, 648 (1955).

Do redakcie došlo 10. 8. 1964

Adresa autorov:

Inž. Kamil Matiašovský, CSc., Ústav anorganickej chémie SAV, Bratislava, Dúbravská cesta.

Doc. inž. Milan Malinovský, CSc., Katedra anorganickej technológie SVŠT, Bratislava, Kollárovo nám. 2.