Gas Hold-Up in a Reactor with Dual System of Impellers*

J. KARCZ, R. SICIARZ, and I. BIELKA

Department of Chemical Engineering, Faculty of Chemical Engineering, Technical University of Szczecin, PL-71 065 Szczecin
e-mail: joanka@ps.pl

Received 1 April 2004

Dedicated to the 80th birthday of Professor Elemír Kossaczky

Results of experimental studies of gas hold-up in a liquid stirred mechanically in a reactor, which was equipped with double stirrers on a common shaft, are presented. Coalescing and noncoalescing gas—liquid systems were tested. The measurements were carried out for aqueous solutions of glucose and glucose syrup, as well as for different configurations of dual high-speed impellers. Stirred tank with inner diameter $D = 0.288$ m was filled with a liquid up to the height $H = 2D$. Experimental studies of gas hold-up in the coalescing and noncoalescing gas—liquid systems stirred using dual system of high-speed impellers show that gas hold-up ϕ for the noncoalescing systems is considerably higher than that for the coalescing ones. The configuration of dual system of impellers used in the study slightly affects only gas hold-up and this effect can be neglected. The dependence of gas hold-up ϕ on the specific power consumption P_g/V_L and superficial gas velocity w_{og} for coalescing and noncoalescing systems can be described by means of eqns (2) and (3), respectively.

Problem of the unequal distribution of the gas bubbles (oxygen concentration) in a liquid can be overcome using mechanical stirring, which intensifies processes in a bioreactor. Presence of oxygen diluted in the liquid is limiting for the growth of microorganisms and efficiency of the bioreaction. The aeration intensity could be insufficient in the case of the biosynthesis processes, where mass transfer is slow. The process can be accelerated providing energy by means of stirrers.

In the case of reactors used for stirring the gas—liquid systems, tall tanks are recommended in order to improve utilization of the gas phase introduced into the stirred tank. One of possible arrangements could be a system of impellers on a common shaft operating in such tank [1, 2]. In bioreactors equipped with double impellers, the regions of sufficient gas dispersion arise in the vicinity of stirrers, where the gas bubbles have the lowest dimensions.

The amount of gas in the gas—liquid system may be assumed as the simplest measure of the effectiveness of the gas dispersion by means of a stirrer. The gas loading in liquid depends on many factors, such as: intensity of stirring, geometrical parameters of the tank and stirrer, the stirrer type, as well as the gas—liquid system properties [3—5]. Several groups of authors studied the gas hold-up in stirred tanks [6—16], e.g. Barigou and Greaves [8] and Bombac and Zun [9] measured local values of the gas hold-up. The latter authors deal with the recognition of the different gas-filled cavity structures close to the impeller blade, which were formed in the pilot-size stirred tank equipped with dual Rushton turbines. Majirova et al. [10] analyzed the gas behaviour in a tank with triple impellers, employing the RTD and axial dispersion model. Coalescing and noncoalescing systems were stirred using down- or up-pumping pitched blade turbines. Linek et al. [11] conducted measurements in the tanks equipped with four stirrers on a common shaft. Further, Kamiński and Niżnik [12—14] performed multipurpose studies in stirred tanks within a wide range of variables. The effects of the shape of impeller blade on the gas hold-up and the volumetric mass transfer coefficient for aerated stirred tank with dual radial flow impellers were experimentally investigated by Orvalho et al. [15]. The results obtained for five modified types of the Rushton turbine showed that all the impellers provided the same gas hold-up and mass transfer coefficient at the same power consumption and superficial gas velocity. Taking into account scale-up aspect, the effects of the type of stirrer and different configurations of double impellers on a common shaft on the power consumption and gas hold-up

were studied by Karcz et al. [16]. The authors [16] analyzed the systems with the different lower high-speed impellers, which operated in the tanks differing ten times within the liquid volume.

The results of an experimental study of gas hold-up in the liquid in a mechanically stirred reactor equipped with double stirrers on a common shaft are presented in the paper. Coalescing and noncoalescing gas—liquid systems were investigated. The measurements were carried out for aqueous solutions of glucose and glucose sirup, as well as for different configurations of dual high-speed impellers. An effect of the different liquid pumping modes of the upper stirrer on the gas hold-up was analyzed.

EXPERIMENTAL

Measurements were carried out in a tall, cylindrical reactor with inner diameter \(D = 0.288 \, \text{m} \) (Fig. 1). Liquid level in the vessel was equal to \(H = 2D \). The vessel with transparent walls had flat bottom and four planar baffles with the width \(B = 0.1D \). Two impellers with diameter \(d = 0.33D \) were located at the distance \(h_1 = 0.17H \) and \(h_2 = 0.67H \) from the bottom of the tank, respectively. Four configurations of impellers imposing different liquid circulation in the vessel were tested (Table 1). During all experiments Rushton disc turbine was placed at the lower position. As upper stirrer Rushton turbine, propeller, HE 3, or A 315 impellers were used (Fig. 2). Ring-shaped gas sparger with diameter \(d_g = 0.7d \) was placed under lower impeller at the distance \(e = 0.5d \) from the bottom of the tank.

Air—liquid systems with varying physical properties of the continuous phase were stirred (Table 2). The experiments were conducted for the following liquid phase: distilled water, aqueous solution with glucose mass fraction \(x = 30 \% \), and for aqueous solutions with glucose sirup mass fraction \(x = 40 \%, 60 \%, \text{ or } 70 \% \). Physical parameters of these liquids were varied within the following range: density \(\rho_L/(\text{kg} \, \text{m}^{-3}) \in (1000; 1258) \); viscosity \(\eta_L/(\times 10^3 \, \text{Pa} \, \text{s}) \in (1; 32.5) \), and surface tension \(\sigma/(\text{N} \, \text{m}^{-1}) \in (0.072; 0.095) \). Systems comprising water or glucose characterize the capability to coalesce gas bubbles. Systems with glucose sirup behave as noncoalescing systems.

Gas hold-up measurements were carried out for varying stirrer speeds \(n \). As the lower limit, the stirrer speed was assumed, at which the gas dispersion under the lower impeller was observed. Gas flow rate \(V_g \) was changed within the range up to \(3.32 \times 10^{-4} \, \text{m}^3 \, \text{s}^{-1} \), corresponding to superficial gas velocity of \(u_{sg} = 5.1 \)
Table 2. Properties of Liquids at a Temperature of 20°C

<table>
<thead>
<tr>
<th>Liquid</th>
<th>(\rho_L) kg m(^{-3})</th>
<th>(\eta_L \times 10^3) Pa s</th>
<th>(\sigma \times 10^3) N m(^{-1})</th>
<th>Capability to coalesce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Distilled water</td>
<td>1000</td>
<td>1</td>
<td>72</td>
<td>+</td>
</tr>
<tr>
<td>2) 30 % aqueous solution of glucose</td>
<td>1200</td>
<td>3.0</td>
<td>72.4</td>
<td>+</td>
</tr>
<tr>
<td>3) 40 % aqueous solution of glucose sirup</td>
<td>1137</td>
<td>3.6</td>
<td>74</td>
<td>–</td>
</tr>
<tr>
<td>4) 60 % aqueous solution of glucose sirup</td>
<td>1210</td>
<td>13.6</td>
<td>79.5</td>
<td>–</td>
</tr>
<tr>
<td>5) 70 % aqueous solution of glucose sirup</td>
<td>1258</td>
<td>32.5</td>
<td>95.2</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 3. Circulation loops in the stirred tank equipped with dual system of impellers on a common shaft: a) double Rushton turbines; b) lower impeller: Rushton turbine, upper: A 315; c) lower impeller: Rushton turbine, upper: HE 3.

\(\times 10^{-3} \) m s\(^{-1} \) (where \(w_{og} = 4\dot{V}_g/\pi D^2 \)). Gas hold-up, \(\varphi \), was calculated from the following equation

\[
\varphi = \frac{V_g}{V_g + V_L} = \frac{h_g}{h_g + H}
\]

(1)

where \(V_g \) and \(V_L \) denote volumes of gas and liquid in the stirred tank, while \(h_g = H_g - H \) corresponds to the difference between the height of gas—liquid mixture, \(H_g \), and the height of liquid in the tank, \(H \). The values of \(h_g \) were read about 20 times from the scale located on the cylindrical wall of the tank. Averaged value of the gas hold-up was used for further calculations.

Circulation loops within the tank equipped with the systems of impellers are shown in Fig. 3. Fig. 3a illustrates the liquid circulation in the tank equipped with double Rushton turbines, where four radial loops are generated. The variant with the upper A 315 impeller is presented in Fig. 3b. In this case, characteristic down-pumping liquid circulation is observed in the upper part of the tank. Liquid circulation imposed by the system composed of the lower radial flow Rushton turbine and upper axial flow HE 3 impeller is shown in Fig. 3c. Upper loops formed by the downwards pumping HE 3 impeller are more regular and elongated in comparison with those generated by A 315 impeller.

RESULTS AND DISCUSSION

Presence of a gas phase in mechanically stirred li-

Fig. 4. Experimental (symbols) and fitted (lines) relative power consumption values obtained for the system air—distilled water stirred with two impellers on a common shaft. Lower impeller: Rushton turbine; upper impellers: \(\triangle \) Rushton turbine, \(\bullet \) A 315, or \(\circ \) HE 3.

Fig. 4. Experimental (symbols) and fitted (lines) relative power consumption values obtained for the system air—distilled water stirred with two impellers on a common shaft. Lower impeller: Rushton turbine; upper impellers: \(\triangle \) Rushton turbine, \(\bullet \) A 315, or \(\circ \) HE 3.

The values of the \(P_g/P_o \) decreased dramatically with the gas flow number increase. Higher drop of the rel-
The dependence of gas hold-up, φ, on the specific power consumption, P_g/V_L, can be estimated on the basis of the results of power consumption measurements for gas—liquid system. The course of the function $\varphi = f(P_g/V_L)$ for given superficial gas velocity, w_{og}, different configurations of double impellers on the common shaft, and for gas—liquid systems with different capability to coalesce gas bubbles is shown in Figs. 5—7. Fig. 5 illustrates the results obtained for the coalescing system air—aqueous solution of glucose containing 30 % of this saccharide. In this case, slight effect of the impeller type on the gas hold-up reveals. The data measured for the system comprising double Rushton turbines lie slightly below the points obtained for the other configurations of impellers. The conclusion concerning just a small effect of the impeller type on the gas hold-up agrees with the previously published results [15]. Orvalho et al. [15] found the gas hold-up approximately independent of the impeller type at a given power consumption and superficial gas velocity, taking into account an error of experimental data.

The dependence $\varphi = f(P_g/V_L)$ for the noncoalescing system air—glucose sirup solution containing 60 % of glucose sirup, stirred using the dual system of stirrers with the axial flow impeller as the upper one, is shown in Fig. 6. In this case, the gas hold-up practically did not depend on the impeller type and its values were significantly higher than those, obtained for the coalescing gas—liquid systems (e.g. Fig. 5). The effect of the liquid capability to coalesce gas bubbles on the gas hold-up is shown in Fig. 7, where the results observed for double Rushton turbines at a given superficial gas velocity $w_{og} = 5.2 \times 10^{-3}$ m s$^{-1}$ and five different gas—liquid systems are presented.

The experimental points in Fig. 7 can be divided into two groups. The first one includes the data measured for distilled water and aqueous solution of glucose as continuous phase, whilst the solutions of glucose sirup represent the second group. The effect of the capability of liquid phase to coalesce gas bubbles on gas hold-up is considerable, as the volume of gas phase held in the liquid was two times bigger for noncoalescing systems compared to the gas hold-up in coalescing liquids.

As the influence of stirrers configuration on the gas hold-up was negligible compared to the effect of liquid properties, the experimental gas hold-up values were fitted using the function $\varphi = f(P_g/V_L, w_{og}) = const1(P_g/V_L)^{const2}(w_{og})^{const3}$. Exponents ($const2$ and $const3$) and coefficient $const1$ varied, depending on the capability to coalesce gas bubbles and concentration of the solution. For coalescing gas—liquid systems (air—distilled water, air—aqueous solution of
Fig. 8. Gas hold-up variation with Kg and We for the systems: a) air—distilled water, and b) air—60 % glucose sirup solution in distilled water, stirred with double Rushton turbines.

For noncoalescing gas—liquid systems (air—glucose sirup systems) one gets

$$\varphi = (0.36 - 6.67 \times 10^{-3} x/{\%}) \left(\frac{P_g}{V_L} \right)^{(a - 2 \times 10^{-3} x/{\%})} \cdot w_{og}^{-0.1} \tag{2}$$

where $a = 0.32$, $\gamma = 0.8$, x denotes glucose mass fraction within the range 60 < x/{\%} < 70; specific energy $P_g/V_L < 0.01$ W m$^{-3}$; and superficial gas velocity $w_{og} < 5.2 \times 10^{-3}$ m s$^{-1}$.

For coalescing liquids the following equation was obtained

$$\varphi = (0.299 x/{\%} - 5.8) \left(\frac{P_g}{V_L} \right)^{0.07 \exp \left(\frac{0.65}{10^2 x/{\%}} \right)} \cdot w_{og}^{1.1} \tag{3}$$

where x indicates glucose sirup mass fraction within the range 40 < x/{\%} < 70; specific energy $P_g/V_L < 0.01$ W m$^{-3}$; and superficial gas velocity $w_{og} < 5.2 \times 10^{-3}$ m s$^{-1}$.

For comparative purposes, variation of the gas hold-up in liquids with different properties is presented in Fig. 8 in a form of function $\varphi = f(Kg, We)$. Within the range of the experiments carried out during this study, the gas hold-up of noncoalescing systems (Fig. 8b) is two or three times the value measured for coalescing liquids (Fig. 8a).

SYMBOLS

- α length of impeller blade m
- b width of impeller blade m
- a width of the blade m
- B impeller diameter m
- d diameter of a gas sparger m
- D inner diameter of stirred tank m
- e distance between the gas sparger and the bottom of the tank m
- h_1 distance between the lower impeller and the tank bottom m
- h_2 distance between the upper impeller and the tank bottom m
- h_g difference between the level of gas—liquid system and liquid in the tank m
- H liquid level in the tank m
- J number of impellers on the common shaft
- Kg number of baffles
- n stirrer speed s$^{-1}$
- P_g power consumption for gas—liquid system W
- P_o power consumption for liquid phase W
- S propeller pitch m
- V_g gas volume in the liquid m3
- V_g^* gas flow rate m3 s$^{-1}$
- V_L liquid volume in the tank m3
- W Weber number ($= n^2d^5\rho_l/\sigma$)
- w_{og} superficial gas velocity ($= 4V_g/\pi D^2$) m s$^{-1}$
- x mass fraction
- Z number of impeller blades
- α adjustable parameter in eqn (2)
- β pitch of the impeller blade o
- γ adjustable parameter in eqn (2)
- η_L liquid viscosity Pa s
- φ gas hold-up defined by eqn (1)
- ρ_L liquid density kg m$^{-3}$
- σ surface tension N m$^{-1}$
REFERENCES