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Thermodynamics of molten salt mixtures is discussed. It is shown that the model for entropy of
mixing based on the equivalent fractions does not obey the Gibbs—Duhem equation.

Molten salt mixtures are the electrolytes consisting
of positively and negatively charged atoms or groups
of atoms. For some molten salt mixtures the same con-
cept of ideal thermodynamic behaviour as for non-
electrolyte solutions can be used. As an example, the
mixtures of alkali metal halides with common cation
or common anion can be mentioned. As it was firstly
pointed out by Hildebrand [1] the entropy of mixing
of the system AgBr in molten alkali metal bromides
is in the first approximation ideal and the excess par-
tial Gibbs energy (which equals the partial molar heat
of solution) of either component is proportional to the
square of the mole fraction of the other. This so-called
regular thermodynamic model usually describes well
thermodynamic behaviour of the mixtures of univa-
lent salts with common cation or common anion.
Situation is more complex when the mixture con-

sists of different cations and anions (reciprocal sys-
tems) or if the mixture contains ions of different
charge. In the case of these mixtures it generally does
not hold

lim
xi→1

dai

dxi
= 1 (1)

where ai and xi are the activity and the mole fraction
of the i-th component, respectively. This means that
entropy of mixing of the molten salt systems might be
different from entropy of mixing of the classical ideal
solution, which is defined by the relationship

∆Smix,id = −R
∑

i

ni lnxi (2)

∆Smix,id is the ideal entropy of mixing and ni is the
amount of substance of the i-th component. As men-
tioned above in molten salt mixtures the relationships
(1) and (2) are not generally valid. This problem is
solved in a number of models of molten salt mixtures
[2—12].

Temkin [2] suggested that in salt mixture the en-
tropy of mixing is determined by the number of per-
mutations among different ions of the same sign and
of the same charge. Thus in the ideal Temkin ionic
model the cations mix randomly in the cation solu-
tion and the anions mix randomly in anion solution.
Entropy of mixing in each of these solutions is given
by the relationship (2). Enthalpies of mixing in each
solution equal zero and the same holds for mixing of
the cation and anion solutions.
Let us consider a solution which is formed by mix-

ing of n1 of salt MpAq (1) and n2 of salts NrBs (2) (ni

denotes the amount of substance in moles). M and N
denote cations and A, B are the anions. According to
the Temkin model [2] the entropy of mixing of the sys-
tem is as follows (T denotes quantities in the Temkin
model)

∆ST,mix = −R(nM lnxT,M + nN lnxT,N +

+ nA lnxT,A + nB lnxT,B) (3)

nM, nN, nA, nB are the amounts of substance of ions in
the mixture. As mentioned above, the Temkin model
considers separately the solution of cations of the same
charge and anions of the same charge. Thus in the re-
lationship (3) xT,M, xT,N denote the ionic fractions
of cations in the cation solution and xT,A, xT,B de-
note the ionic fractions of anions in the anion solution.
These ionic fractions are defined as follows

xT,M =
n1p

n1p+ n2r
xT,N =

n2r

n1p+ n2r

xT,A =
n1q

n1q + n2s
xT,B =

n2s

n1q + n2s
(4)

As ∆Hmix = 0, ∆Gmix = −T∆Smix, and

∂∆Smix
∂n1

= −R ln a1
∂∆Smix

∂n2
= −R ln a2 (5)
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Thus for the activities of components in the Temkin
ideal ionic solution we get the expressions

aT,1 = xp
T,M · xq

T,A aT,2 = xr
T,N · xs

T,B (6)

Flood andUrnes [3] used this model for the description
of the thermodynamic behaviour of the salt mixtures
MgCl2—AlkCl (Alk = Na, K, Rb). They assumed that
divalent Mg2+ cations mix randomly with monovalent
alkali metal cations.
Förland [4, 5] proposed to solve the deficiency of

the model based on random mixing of ions with dif-
ferent charges [3] by the assumption that the ions can
bring to the solution also vacancies. He showed [4,
5] that the heat of mixing in the systems Na2CO3—
CaCO3 and K2CO3—CaCO3 can be described by a
simple regular solution model if the composition of
the system is expressed by the so-called equivalent
fractions. According to Förland [4, 5] one can assume
that a quasi-lattice exists with the anions occupying
the anion region of the lattice while the cations mix
on the cation portion of the lattice. For every Ca2+

cation added from CaCO3 to the solvent Na2CO3, a
“vacancy” is also added.
According to [5], for the case in which Mq+, Ns+

and the cation vacancies are randomly distributed
over the cation sites, the entropy of mixing due to
this disorder of the three species Mq+, Ns+ and CV−

(cation vacancy) over all cation sites is

∆Smix = −R (nMq+ + nNs+ + nCV−) ·

·
(

nMq+

n
ln

nMq+

n
+

nNs+

n
ln

nNs+

n
+

nCV−

n
ln

nCV−

n

)
−

− SMpAq − SNrBs (7)

where ni denotes the number of moles of each species
and n is the number of moles of cation sites. The last
two terms is the entropy due to the disorder in the
distribution of Mq+ and CV− in pure MpAq and the
entropy due to disorder in NrBs, respectively. If this
distribution is assumed to be random, then

SMpAq = −Rpqn1

(
1
q
ln
1
q
+

q − 1
q
ln

q − 1
q

)

SNrBs = −Rrsn2

(
1
s
ln
1
s
+

s − 1
s
ln

s − 1
s

)
(8)

This gives

∆Smix = −R (n1pq + n2rs) ·
· (xF,M lnxF,M + xF,N lnxF,N) (9)

where xF,i denotes equivalent fractions of i

xF,M =
n1pq

n1pq + n2rs
xF,N =

n2rs

n1pq + n2rs
(10)

In a similar way one can obtain relationships for
anions

xF,A =
n1pq

n1pq + n2rs
xF,B =

n2rs

n1pq + n2rs
(11)

Detailed discussion of this model can be found in
monographs [5, 6]. Another model of molten salt mix-
tures was proposed by Herasimenko [7]. It became
more popular in the version published by Haase [8,
9].
In this paper we will show that the Förland’s model

does not obey the Gibbs—Duhem equation in all cases
and thus it is not consistent from the thermodynamic
point of view.

Verifying of the Thermodynamic Consistency
of the Förland’s Model

Let us consider a solution, which is formed by mix-
ing of n1 moles of salt MpAq (1) and n2 moles of salts
NrBs (2). M and N denote cations and A, B are the
anions. The equivalent fractions of both cations and
anions are defined by eqn (7). Activities of compo-
nents MpAq and NrBs in ideal solution are defined in
a similar way as in the Temkin model (see eqn (6)).
In this case, however, the equivalent fractions instead
of ion fractions are used. It follows

aF,1 =

(
n1pq

n1pq + n2rs

)p+q

aF,2 =

(
n2rs

n1pq + n2rs

)r+s

(12)

Symbol F in the index denotes the Förland’s model.
According to the Gibbs—Duhem equation it holds

n1d ln aF,1 + n2d ln aF,2 = 0 (13)

or

n1

(
∂ ln aF,1

∂n1

)
n2

+ n2

(
∂ ln aF,2

∂n1

)
n2

= 0 (14)

We apply now eqn (14) to the relationships (12)

∂ ln aF,1

∂n1
=
1

aF,1
· ∂aF,1

∂n1
(15)

∂aF,1

∂n1
= (p+ q) ·

(
n1pq

n1pq + n2rs

)p+q−1
·

· n2rspq

(n1pq + n2rs)
2 (16)

and thus
∂ ln aF,1

∂n1
=

(p+ q)n2rs
n1 (n1pq + n2rs)

(17)
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Table 1. Sum of Eqn (19) as a Function of Stoichiometric Coefficients of Compounds MpAq and NrBs for p, q, r, s ∈ 〈0, 4〉

p q r s (p+ q) rs − (r + s) pq p q r s (p+ q) rs − (r + s) pq

1 1 1 1 0 1 4 1 4 0
1 1 1 2 1 1 4 2 2 4
1 1 1 3 2 1 4 2 3 10
1 1 1 4 3 1 4 2 4 16
1 1 2 2 4 1 4 3 3 21
1 1 2 3 7 1 4 3 4 32
1 1 2 4 10 1 4 4 4 48
1 1 3 3 12 2 2 2 2 0
1 1 3 4 17 2 2 2 3 4
1 1 4 4 24 2 2 2 4 8
1 2 1 2 0 2 2 3 3 12
1 2 1 3 1 2 2 3 4 20
1 2 1 4 2 2 2 4 4 32
1 2 2 2 4 2 3 2 3 0
1 2 2 3 8 2 3 2 4 4
1 2 2 4 12 2 3 3 3 9
1 2 3 3 15 2 3 3 4 18
1 2 3 4 22 2 3 4 4 32
1 2 4 4 32 2 4 2 4 0
1 3 1 3 0 2 4 3 3 6
1 3 1 4 1 2 4 3 4 16
1 3 2 2 4 2 4 4 4 32
1 3 2 3 9 3 3 3 3 0
1 3 2 4 14 3 3 3 4 9
1 3 3 3 18 3 3 4 4 24
1 3 3 4 27 3 4 3 4 0
1 3 4 4 40 3 4 4 4 16

The expression for ∂ ln aF,2/∂n1 can be derived in a
similar way.

∂ ln aF,2

∂n1
= − (r + s) pq

n1pq + n2rs
(18)

The Gibbs—Duhem equation is fulfilled when the sum
of the partial derivatives (17) and (18) multiplied by
the amount of substance ni (see eqn (14)) equals zero.

Sum = (p+ q)rs − (r + s)pq = 0 (19)

For some combinations of p, q, r, s eqn (19) is eval-
uated in Table 1. It follows that, in general, the För-
land’s model does not fulfil the Gibbs—Duhem equa-
tion.
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