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It is becoming widely recognized in the pharmaceutical industry that a more structured approach
to process development would benefit the quality of the developed processes to ensure added value to
the products in the long term. In this paper, a model-based methodology is proposed for the robust
evaluation and development of pharmaceutical processes which realizes the pressures inherent to
the industry and that critical decisions need to be made at all stages despite incomplete knowledge
of the process. It aims to identify the most relevant process information subject to the availability
and quality of the prevailing data at any given stage in the development, so that informed deci-
sions can be made at short notice. Steps towards a multiscenario approach are proposed to resolve
stochastic model parameter uncertainties in process sequences and evaluate robust performance
indicators. Correlation analysis is used to provide an indication of the critical stage interactions
under uncertainty so that potential causes of problems can be identified in a more rigorous man-
ner. The potential benefits of the approach are demonstrated using a two-stage example under two
parameter uncertainties. The directions required to complement a general methodology regarding
practical application to real problems are indicated.

Increasing emphasis and competition for new phar-
maceutical chemicals requires consistent, high quality
products in shorter lead times to market. Many of
the challenges facing process development are unique
to the pharmaceutical industry. Complex organic syn-
theses of high cost raw materials coupled with im-
plementation of laboratory defined multiphase batch
processes into existing multipurpose equipment and a
continual need for high quality chemicals for trials of-
ten at short notice, combine to pose unique challenges
[1]. Additionally, process development is tightly mon-
itored by regulatory legislature and restricted by the
substantial economic and time pressures to be first to
the market. The implications are that simultaneous
process development, scale-up and chemical produc-
tion must be achieved in an environment in which
scale-up of laboratory defined processes proceeds as
quickly as possible in a manner of ‘learning by doing’
where all the development effort is directed at pro-
cess feasibility with little resource for optimization.
Despite the inevitable trial and error in scale-up pro-
cesses, a decision needs to be made as to whether the
current process knowledge is sufficient to start a pilot
plant run with an acceptable expectation of success or
whether it would be beneficial to improve the quality
of the data prior so that surprises are less frequent. A

key element for effective process development is the
ability to make the right decisions at early stages,
despite uncertain and incomplete information on the
process.

The problem posed in this work is concerned with
the uncertainty in the process models due to the lack
of information for that process at any given stage in
development. The pharmaceutical industry acknowl-
edges that building reliable process models would help
to save resources in the long term by providing answers
to process issues, reducing the trial and error aspect
and introducing the opportunity for optimization [2].
However, there is often considerable uncertainty in the
inherent physicochemical mechanisms of pharmaceu-
tical processes. Process models and parameters are
generated from laboratory experiments in the early
stages of the development and may be refined during
later stages. There may be no evidence that under the
conditions for which this information was established,
a larger scale process will exhibit the same behaviour
at the operating conditions enforced within existing
equipment, which is almost certainly of different de-
sign and configuration.

The aim of this work is not a rigorous modelling
validation, but rather to identify within simple mod-
els where the uncertainties can have a major impact
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on the process sequence. It would be useful to identify
whether the quality of the available data and more
specifically the uncertainty in the parameters of the
subsequent models, can potentially cause problems
which may be interpreted in the real process. There
appears to be significant potential for a computational
tool which may help provide this information to sup-
port process development decisions and focus experi-
mental effort before the start of scale-up runs.

THEORETICAL

Methods for Uncertainty

Uncertainty and incomplete knowledge is always a
problem in the design process. The conventional ap-
proach often used in industry is the incorporation of
design margins based on empirical over-design factors.
More rational systematic approaches to account for
uncertainty have been investigated. The concept of
flexibility analysis for design optimization was intro-
duced by Halemane and Grossmann [3], who solved a
max-min-max constrained feasibility test problem un-
der nonprobabilistic uncertainty ranges. Swaney and
Grossmann [4] extended this concept to a flexibility
index which measures the maximum parameter devi-
ation for which feasibility can be guaranteed. Straub
and Grossmann [5, 6] define a flexibility index sub-
ject to stochastic parameter uncertainty measuring
the probability of success accounting for hard and soft
constraints. Stochastic flexibility analyses for design
optimization have also received attention [7]. Pinto
[8] introduces a cost of parameter uncertainty, used
to trade-off resource allocation against the potential
benefit of reducing the uncertainty.

Many of these approaches are directed towards the
design of continuous systems and some have been
extended to dynamic systems, for which literature
is more limited. Terwiesch et al. [9] review indus-
trial batch modelling and operating practice and sug-
gest approaches for optimization of operating strategy
under model uncertainty. These include probabilistic
measures of success based on the stochastic flexibil-
ity index approach [10], and multiscenario approaches
used by Ruppen et al. [11] to optimize batch reactor
operation under parameter uncertainties. Dimitriadis
and Pistikopoulos [12] use a nonprobabilistic approach
and introduce an index quantifying the ability of a
design to pass a dynamic feasibility test. Samsatli et
al. [13] introduce robustness metrics for expectation
operators which take into account the one-sided na-
ture of many practical thresholds. These approaches
have tended to address optimal operation of single
units under uncertainty. Operational windows have in-
dicated an application to multistage processes where
windows which guarantee overall feasibility are speci-
fied for each stage a priori [14, 15].

The pharmaceutical industry is beginning to rec-

ognize the need for a systematic approach to sustain
the development of higher quality processes using less
resources in shorter times [2, 16], to rely not only on
human expertise but integrating this knowledge with
computational tools so that these decisions can be
based on a wider range of structured information. In
this article a methodology for model-based pharma-
ceutical process development is proposed in view of
the steps towards the utilization of a multiscenario ap-
proach to generate the data for the critical evaluation
of batch process sequences under model parameter un-
certainty.

Methodology

The available information concerning a process
needs to be structured in a flexible computational tool
to support design decisions regarding the viability of
a process under incomplete knowledge. With simple
models of a proposed sequence of operations and char-
acteristic data on the parameter uncertainties, a gen-
eral methodology for a model-based approach to phar-
maceutical process development (Fig. 1) can be used
to identify the critical parameters, stage interactions,
and potential problems in the integrated process and
focus attention to improving the model definition.

A sensitivity analysis identifies the most signifi-
cant parameters to reduce the size of the multisce-
nario problem. Solution of the multiscenario prob-
lem can yield expectation operators measuring con-
ventional aspects of a process (e.g. a quality objec-
tive or variance) or more specific robustness metrics
(e.g. expected extent of violation [13]). Expectation
is the resolution of the uncertain parameter space by
multiple integration of the product of the joint un-
certain parameter probability distribution and some
quality function, over the number of uncertain param-
eters (see Appendix I).

In this article the multiscenario problem is posed
as an evaluation in which it is assumed the conditions
are based on an initial process definition derived from
laboratory experiments. Alternatively an optimization
problem may be posed which could be formulated as
either a nominal or a multiscenario optimal control
problem in which some measure of robustness is in-
corporated.

Identification of a high risk of unacceptable perfor-
mance, denoted by failure of key expectation thresh-
olds, leads to an important process development deci-
sion. The primary limiting factor may be due to the
poor quality of the model parameters or the limita-
tions of the proposed operations and existing equip-
ment. To support this decision, an indication of the
critical parameter is obtained using a correlation anal-
ysis based on the information generated in the mul-
tiscenario problem. The context of criticality depends
on the objectives of the process development. It would
be desirable to be able to predict what reduction in
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Fig. 1. A general methodology for a model-based approach to pharmaceutical process development under uncertainty.

which uncertainty gives the greatest decrease in ad-
verse effect on the process with respect to the final ob-
jective so that a better end product can be expected.
It would also be important to reduce the uncertainty
which ultimately results in a better defined process
and a more confident understanding of the interac-
tions with respect to the current models of the overall
process. A reduction in variance would indicate the
former, assuming the available models are reasonably
reliable. However these objectives may conflict and a
decision can be based on the trade-off.

The correlation analysis aims to improve the un-
derstanding of the uncertain system by identifying
the interactions of the integrated system under un-
certainty in a systematic manner. Despite the limi-
tation of the correlation analysis in determining only
approximate qualitative linear relationships, it is con-
sidered adequate to provide sufficient indication of the
critical interactions, for the requisite level of investiga-
tion. The expectation shows the effect quantitatively.
Analysis of certain relationships (Fig. 2) can provide

this information. Steps (i) and (v) directly indicate
the critical uncertain parameters, θmc, and stage vari-
ables, x(ts)c.s, to the final objective, Q. Step (ii) gives
the critical final stage variables comprising Q, from
which critical upstream variables are identified, Step
(iii). Step (iv) relates the degree of relation between
θm.s and x(ts)i.s, for each stage, s. While it would be
reasonable to assume that reducing the uncertainty in
the earliest stage may provide a clearer definition of
the process as propagation of the uncertainty through
the stages via the interactions is decreased, the cor-
relation analysis can be used to deduce the critical
stage.

Identification of the critical parameter, θmc, cre-
ates a focus for design of experiments towards a spe-
cific process mechanism in the relevant stage. First,
an indication to the uncertainty reduction in θmc re-
quired to meet the desired performance thresholds is
achieved through an optimization which finds the new
constricted θmc limits about the original mean, µ.
Trade-offs between expected performance and uncer-
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Fig. 2. Correlated interactions for an integrated process sequence.

tainty reduction may be generated. This information
provides a basis for the decision, indicated in Fig. 1, re-
garding resource allocation towards additional exper-
imentation for the improvement of the process model
definition with respect to the critical mechanism. The
outcome of the experiments should provide a more ac-
curate definition of the critical parameter or a revised
model structure, enhancing the overall model defini-
tion in an efficient and effective manner made possible
by the model-based approach.

The methodology needs be flexible enough for use
throughout progressive stages of development, incor-
porate new data as it becomes available from exper-
iments or scale-up runs, track the progressive reduc-
tion in uncertainty and promote process alternatives.
Its purpose is to aid engineers in the identification
of potential process bottle-necks by examining ‘what
if’ scenarios where process interactions may be diffi-
cult to predict by intuition, so that process develop-
ment is achieved in a manner of learning before doing
as opposed to the current trend of learning by doing.
An example is used to identify the potential of the
methodology with regard to the stated criteria.

Example

The proposed methodology is illustrated using a
simple example of a two-stage batch reactor sequence
(Fig. 3). Each stage is assumed to be isothermal, well
mixed with instantaneous addition of feeds (A into
Stage 1, D and final contents of Stage 1 into Stage
2). The reactions are liquid phase of constant volume,
elementary and irreversible according to the reaction
scheme below

Stage 1. (rx1 and rx2): A
k1−−−−→ B

k2−−−−→ C (A)
Stage 2. (rx3): B + 2D

k3−−−−→ E desired reaction (B)
(rx4): C + 2D

k4−−−−→ F undesired reaction (C)

In Stage 1, component A reacts to form the de-
sired intermediate B in rx1, but a consecutive reac-
tion rx2 converts B to an undesired intermediate C.
On completion of Stage 1, the reaction mixture is

Fig. 3. Two-stage batch reactor sequence for Example.

passed to Stage 2 where B reacts with reactant D,
rx3, to form the desired product E whilst parallel re-
action rx4 forms impurity F. The reaction conditions
(Fig. 3), are assumed to be derived from a workable
process, defined by chemists in the laboratory. Al-
though sub-optimal under these conditions, the con-
centration of B in Stage 1, CB1, is close to a maximum
and the chemist’s targets of reactant conversions, XA

= 99 % and XD = 98 %, are achieved. However at the
larger scale the process objectives change and a purity
threshold of product E, PE = 80 %, is recommended
on completion of Stage 2 due to the known limitations
of proposed downstream purification operations.

Simple models of both stages are available (see
Tables 2 and 3, Appendix II) for which the values
of the experimentally derived activation energies are
uncertain. A sensitivity analysis indicates that only
deviations in Ea2 and Ea3 affect the process signif-
icantly. Ea2 and Ea3 are assumed to be indepen-
dent and characterized by normal probability distri-
butions, N(30000, 3000) and N(50000, 5000), respec-
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tively, within a σ1.σ2 joint distribution limit. The mul-
tiscenario stochastic problem posed is an evaluation,
where the conditions are assumed to be fixed at those
recommended by the chemists. It is desired to eval-
uate the process with respect to the expected value
of PE over the entire uncertainty space and the ex-
pected extent of PE threshold violation in the case
of sub-grade performance (see Appendix I). 7th order
Gaussian quadrature (49 scenarios for 2-dimensional
uncertainty) is used to solve the multiscenario prob-
lem.

RESULTS AND DISCUSSION

The results for the initial evaluation under uncer-
tainty (Table 1) show that the expected value of PE is
1.5 % below the desired threshold with an expected vi-
olation of 4.1 % in the uncertain parameter regions of
sub-grade performance. The significant results of the
correlation analysis under both uncertainties for the
failure scenarios (Fig. 4) indicate a stronger relation
between Ea2 and PE than Ea3 and PE. The poten-
tial problem is portrayed by the uncertainty in Ea2,
considering its strong relation with CB1, CC1 with the
analysis indicating the criticality of the interactions
between CB1, CC1 and the desired product CE2 and
impurity CF2. With respect to the final objective, PE,
the most critical stage completion variables are CB1,
CC1 and CE2, CF2. However, it can also be seen in
Fig. 4 that the critical variables of Stage 1 are strongly
correlated to the respective stage uncertainty which is
not the case for Stage 2, indicating the greater adverse
effect of the uncertainty in Stage 1 on the overall pro-
cess. It can be inferred that a reduction in the Ea2

uncertainty, over Ea3, would achieve better expected
results.

Table 1. Expectation Operators for Example

Initial evaluation

E(PE) 0.788
Eviol(PE) 0.041
Evar(PE) 0.007

A 32 % reduction in the uncertainty of Ea2 achieves
the desired expected value threshold of 80 % purity
and reductions in the expected threshold violation and
variance of 33 % and 61 %, respectively. The relative
effects of the uncertainty reduction in Ea2 or Ea3 on
the expected value and threshold violation indicators
are apparent in the trade-off curves in Figs. 5a and
b. It is clear that reducing the uncertainty in Ea2 as
opposed to Ea3, a distinct advantage is available re-
garding the expectation objectives of product purity
performance, E(PE), and increased confidence in both
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Example.

Fig. 5. Uncertainty reduction trade-off curves. � Ea2 uncer-
tainty reduction, N Ea3 uncertainty reduction, � Ea2

and Ea3 uncertainty reduction. a) Actual change in
E(PE), b) percentage change in Eviol(PE)/%.

the adverse performance, Eviol(PE), and in the model
definition of the overall process, Evar(PE). Correlation
analysis identifies the change in the critical interac-
tions which result from this reduction in uncertainty.
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Fig. 6. Effect of Ea2 uncertainty reduction on PE : Ci2 corre-
lation coefficients. � PE : CB2, � PE : CC2, N PE :
CD2, × PE : CE2, ∗ PE : CF2.

It makes sense that the potential problem caused by
the uncertainty in Ea2 is eliminated, since CE2 is still
critical to PE (CF2 is not) but is not strongly related to
either the Stage 1 or Stage 2 uncertainty. Ea3 appears
to be marginally the critical parameter. Uncertainty
reduction in both Ea2 and Ea3 provides significantly
superior performance but would require more experi-
mentation. The results appear to corroborate the pre-
diction of the critical parameter from the correlation
analysis.

Analysis of stepwise reductions in each uncertainty
indicates that reduction in one uncertainty leads to
a reduced correlation with the final objective but an
increase in the correlation with the remaining uncer-
tainty. Not so intuitive is the identification of how the
behaviour of the critical interactions changes with re-
spect to each reduction. As uncertainty in either Ea2 or
Ea3 is reduced and the system approaches uncertainty
in only one dimension, the relationship between PE

and the Stage 2 variables appears to approach linear-
ity indicated by the correlation coefficients converging
to 1 or −1 (Figs. 6 and 7). Considering the nature of
the objective function (see Table 3, Appendix II) this
behaviour may not be surprising. Since a stronger cor-
relation to PE (converging to 1 or −1) in the Stage 2
variables is observed at all levels of uncertainty re-
duction in Ea2 over Ea3 (Figs. 6 and 7), it may be
surmised that less refinement of the Ea2 parameter is
required to give an equivalent level of confidence in
the given definition of the overall process. The oppo-
site response between the correlations of CB2 and CC2

to PE under Ea2 or Ea3 uncertainty reduction can be

Fig. 7. Effect of Ea3 uncertainty reduction on PE : Ci2 corre-
lation coefficients. � PE : CB2, � PE : CC2, N PE :
CD2, × PE : CE2, ∗ PE : CF2.

attributed to the correlations of CB1 and CC1 converg-
ing to 0 but diverging to 1 and −1 for each respective
reduction. This is intuitive considering the reaction
scheme.

The ability to provide such insight in more com-
plex systems would be useful in the decision-making
process (Fig. 1). It is important to note the possibility
a reduction in uncertainty will not give an improve-
ment in all the performance indicators, depending on
the shape of the feasible region inside the uncertainty
space. However, the need for a more accurate process
model and in particular the critical stage are identi-
fied. This must be the ultimate aim of a model-based
approach to process development in the long term, so
that behaviour can be confidently predicted, problems
ascertained a priori and optimization can become a
more realistic target.

Whilst the considered example is of elementary
complexity and the results could be seen to be in-
tuitive, considerations of real process sequences are
not. The multiphase batch processes inherent to the
pharmaceutical industry mean that even using sim-
ple models, the stage interactions and effect on the
final end product will often be impossible to predict
across varying production scales and different equip-
ment. Further work will be directed at integrating
multiphase models into the process sequence, imple-
mentation of different formulations of the multisce-
nario problem (e.g. robust optimal control), and in-
creasing the efficiency of the multiscenario solution
which could potentially become an excessively large
problem under more uncertainties.
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CONCLUSION

The need for a more structured approach to the
development of pharmaceutical processes is acknowl-
edged with respect to the industrial pressures. The
potential of the approach is assessed using a simple
two-stage example with uncertainty in two param-
eters. Solution of the stochastic multiscenario prob-
lem gives the expected key performance indicators for
which the correlation analysis conclusively indicated
the correct prediction of the critical limiting parame-
ter. It was also possible to identify the important stage
interactions under the prevalent uncertainty in an effi-
cient manner, using the data generated from the mul-
tiscenario problem. It is concluded that the methodol-
ogy has the capacity to provide useful information but
further work is required to confirm the multiscenario
approach regarding practical application to real prob-
lems. A more efficient method to resolve the uncer-
tainty may be necessary to ensure a tractable robust
optimal control problem in which a larger sequence of
models and more uncertainties can be accommodated.

SYMBOLS

k reaction rate constant, mol m−3 s−1 for
k1 and k2; m6 mol−2 s−1 for k3 and k4

r correlation coefficient
rx elementary reaction
tS stage completion time min
A1, A2 pre-exponential factor s−1

A3, A4 pre-exponential factor m6 mol−2 s−1

C component concentration mol m−3

C0 initial component concentration mol m−3

E expected value
Ea activation energy kJ mol−1

Eviol expected violation
Evar expected variance
P purity %
T temperature K
V reaction volume m3

µ mean
θ uncertain parameter
σ standard deviation

Indices (sets for Example are shown)

c criticality identifier
i variable identifier, i ∈ {A, B, C, D, E, F}
l reaction identifier, l ∈ {1, 2, 3, 4}
m uncertain parameter identifier, m ∈ {1, 2}
s stage identifier, s ∈ {1, 2}
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APPENDIX I

Mathematical Approach

For the evaluation problem the general expression
for an expectation operator of some quality Q or func-
tion of Q over n scenarios and m uncertain parameters
θ, is

E(Q) =
∫
m∈Θ

J(θm)Q(ẋ, x, y, t, θm)dθm =

=
N∑
n=1

jnQ(ẋn, xn, yn, t, θmn) (1)

where x are differential state variables, ẋ are their
derivatives, y are the algebraic variables, and t is time.
A Gaussian—Legendre quadrature scheme is used to
approximate the multiple integral of eqn (1). It dis-
cretizes the parameter space, Θ, and assigns weighted
probabilities, j, from a joint distribution function, J.
Most conventional measures may be expressed as an
expectation function in this way. In the Example, ex-
pected violation from a quality threshold, Qth, is used.
For the evaluation problem it is given by [13]

Eviol(Q) =
∫
m∈Θ

J(θm)b[Q(ẋ, x, y, t, θm)−Qth]dθm

(2)
where b is a binary variable denoting the one-sided
aspect of pass or failure of the threshold. In the opti-
mization problem E(Q) or Eviol(Q) could be the ob-
jective function or a constraint with u and ν, the time-
dependent and time-invariant control variables, com-
ponents of Q. Control can either be optimized over the
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entire uncertainty space in a ‘here and now’ recourse
problem or it can be assumed to be adjustable across
the uncertainty space in a ‘wait and see’ problem.

The correlation analysis is based on estimating lin-
ear relationships between system variables and param-
eters, in the form of correlation coefficients. The stan-
dard expression for the correlation coefficient between
random variables, X and Y, is

rX,Y =
cov(X,Y )√

var(X) var(Y )
(3)

where −1 5 rXY 5 1 and the covariance, cov, and
variances, var, are based on standard discretized ex-
pressions for which the probabilities are assigned from
the quadrature scheme. The uncertain parameters are
random and the process variables, as functions of the
uncertain parameters, are as well.

APPENDIX II

Model equations for Example (see Fig. 3 for pa-
rameter values).

Table 2. Example: Stage 1 Model Equations

Model 1, t ∈ [0, t1] Initial conditions

dCA

dt
= −k1(T1)CA CA(0) = CA0

dCB

dt
= k1(T1)CA − k2(T1)CB CB(0) = 0

dCC

dt
= k2(T1)CB CC(0) = 0

k1(T1) = A1e
Ea1
RT1

k2(T1) = A2e
Ea2
RT1

Table 3. Example: Stage 2 Model Equations

Model 2, t ∈ [t1, t2] Initial conditions

dCA

dt
= 0 CA(0) = CA(t1)

dCB

dt
= −k3(T2)CBC

2
D CB(0) = CB(t1)

dCC

dt
= −k4(T2)CCC

2
D CC(0) = CC(t1)

dCD

dt
= −2k3(T2)CBC

2
D CD(0) = CD0

−2k4(T2)CCC
2
D

dCE

dt
= k3(T2)CBC

2
D CE(0) = 0

dCF

dt
= k4(T2)CCC

2
D CF(0) = 0

k3(T2) = A3e
Ea3
RT2

k4(T2) = A4e
Ea4
RT2

PE =
CE

CA +CB +CC +CD + CE +CF
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