Exo-Stereoselective 1,3-Dipolar Cycloadditions of Nitrile Oxides to Endo-7-($\mathbf{R}^{1}, \mathbf{R}^{2}$-methylene)bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylates

${ }^{a} V$. ONDRUŠ, ${ }^{a}$ L. FIŠERA* ${ }^{\text {b }}{ }^{b}$ P. ERTL, and ${ }^{\mathrm{c}} \mathrm{N}$. PRÓNAYOVÁ
${ }^{\text {a }}$ Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, SK-812 37 Bratislava
${ }^{\mathrm{b}}$ Institute of Chemistry, Comenius University, SK-842 15 Bratislava
${ }^{\text {c }}$ Central Laboratory of Chemical Techniques, Slovak Technical University, SK-812 37 Bratislava

Received 27 January 1994

Abstract

1,3-Dipolar cycloaddition of arylnitrile oxides to endo- N -(3,5-dichlorophenyl)imide 7-($\mathrm{R}^{1}, \mathrm{R}^{2}$ -methylene)bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylates ($\mathrm{R}^{1}, \mathrm{R}^{2}=$ phenyl, methyl, 2-thienyl, 2-furyl) led exclusively to endo-exo cycloadducts. Semiempirical quantum-mechanical methods AM1 showed that the exclusive exo-1,3-dipolar cycloaddition can be rationalized through the secondary orbital interaction between 1,3-dipole and π orbital of the exo-cyclic $\mathrm{C}=\mathrm{C}$ double bond in the methylene bridge. Both endo-syn-exo and endo-anti-exo cycloadducts were formed in the ratio 5050 in the case of $R^{1} \neq R^{2}$.

The high synthetic versatility of 2-isoxazolines (4,5dihydroisoxazoles) is based on their potential to serve as flexible synthetic equivalents of β-hydroxy ketones [1] and other related functions [2], γ-amino alcohols [3], and enaminoaldehydes [4]. Recently we have found that the selectivity of the photorearrangement of the condensed isoxazolines possessing a methylene bridge to enaminoaldehydes [5] is due to a stabilization of the biradical by the overlap of the radical electron with π-electrons of the bridge $\mathrm{C}=\mathrm{C}$ double bond. With our effort to investigate the influence of substituent in methylene bridge on the photorearrangement we have paid our attention to the preparation of N-(3,5-dichlorophenyl)imide $10-R^{1}, R^{2}$-methylene-5-phenyl-3-oxa-4-azatricyclo[5,2,1, $0^{2,6}$]dec-4-ene-8,9-dicarboxylates III and IV. In this paper, we describe in detail the stereoselectivity of the 1,3-dipolar cycloaddition of arylnitrile oxides / to endo- N-(3,5 -dichlorophenyl)imide 7 -($\mathrm{R}^{1}, \mathrm{R}^{2}$-meth-ylene)bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylates // ($\mathrm{R}^{1}, \mathrm{R}^{2}=$ phenyl, methyl, 2-thienyl, 2-furyl), together with AM1 calculations.

Compounds II were prepared by the treatment of $\mathrm{R}^{1}, \mathrm{R}^{2}$-substituted fulvenes with N-(3,5 -dichlorophenyl)maleimide [6]. When X -substituted benzonitrile oxides I (where $\mathrm{X}=\mathrm{H}, 4-\mathrm{CH}_{3}, 4-\mathrm{Cl}$) were generated from the corresponding benzohydroximoyl chlorides and triethylamine in diethyl ether in the presence of symmetrically substituted derivatives // ($\mathrm{R}^{1}=\mathrm{R}^{2}$), the endo-exo cycloadducts III were formed together with the recovered starting material $/ /$ and

[^0]3,4-diarylfuroxan, the nitrile oxide dimer. The first prefix endo in III showed a relationship between imide moiety and methylene bridge; the second prefix exo a relationship of isoxazoline moiety to methylene bridge. The second possible endo-endo products V have not been detected in the crude reaction mixture by NMR spectroscopy.
There are two possible stereoisomeric adducts of I and endo II; namely endo-exo III and endo-endo V. In addition, two further stereoisomers exo-exo VI and exo-endo VII can be formed from exo II, which could be theoretically formed by endo-exo isomerization of endo II. It is noteworthy to mention that the attempt to isomerize endo I/ to exo I/ failed even by heating at $180^{\circ} \mathrm{C}$.
The exclusive exo-stereoselective 1,3-dipolar cycloaddition to endo Il was observed also in the case of unsymmetrically substituted methylene derivatives of $I I\left(R^{1} \neq \mathrm{R}^{2}\right)$. Both, endo-syn-exo III and endo-anti-exo IV cycloadducts were formed in the ratio $50 \quad 50$. The prefixes syn and anti showed a relationship between isoxazoline oxygen atom and R^{1} substituent bonded to the methylene bridge. The distinction between these possibilities was made on the basis of spectroscopic data, in particular using NOE experiments. For example, NMR spectrum of Illa showed the presence of doublets at $\delta=3.40$, $3.82,3.87$, and 4.94 for $\mathrm{H}-7, \mathrm{H}-1, \mathrm{H}-6$, and $\mathrm{H}-2$ atoms. The ${ }^{1} \mathrm{H}$ NMR spectrum of cycloadducts $/ V$ possesses significant doublets for these hydrogen atoms, too. This excludes the possibility that this is a stereoisomer V and proves that both isolated adducts III and IV result from the same approach be-
tween nitrile oxide $/$ and dipolarophile $I I$, namely that which binds the 1,3-dipole with the $\mathrm{C}=\mathrm{C}$ double bond of II from the exo-side to the methylene bridge. The NMR spectrum of the endo-endo stereoisomer V would have doublet of doublets for the aforementioned H-1, H-2, H-6, and H-7 protons. In III and IV the zero coupling constants between $\mathrm{H}-1$ and $\mathrm{H}-2$ as well as between $\mathrm{H}-6$ and $\mathrm{H}-7$ are consistent only with exo stereochemistry, since in the endo-endo isomer V the above-mentioned hydrogens would be nearly eclipsed, and would give rise to a much larger coupling constant.

The relative configuration of the R^{1} and R^{2} substituents related to $\mathrm{H}-1$ and $\mathrm{H}-7$ in the case of III and IV was confirmed by NOE difference spectroscopy. For example, the irradiation of the methyl group in III ℓ caused NOE's for H-1 $(\delta=4.52)$, which suggested that these groups were on the same side. Moreover, the presence of NOE between $\mathrm{H}-1$ and $\mathrm{H}-2(\delta=4.89$, proton in the neighbourhood to the isoxazoline oxygen atom) as well as the absence of NOE between $\mathrm{H}-1$ and $\mathrm{H}-6$ confirmed the suggested structure III ℓ. Similarly, the irradiation of the methyl group in IV ℓ caused NOE's for H-7. Irradiation of H-7 results in signal enhancement of H-6 proton ($\delta=3.86$), consistent with the endo-anti-exo configuration of $I V \ell$.

In order to rationalize the above cycloadditions, we have carried out quantum-mechanical calculations. The relative stabilities of all possible cycloadducts $I I I, V-V I I\left(A r=A r^{1}=R^{1}=R^{2}=P h\right)$ have been assessed by the semiempirical AM1 method [7]. Geometries of starting compounds and cycloadducts were totally optimized. The calculated relative energies are expressed as energy differences, the energy of the most stable structure being the reference.
$\Delta E($ endo-exo $I I I)=34.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
ΔE (endo-endo V) $=0.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta E($ exo-exo $V I)=17.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta E($ exo-endo VII$)=16.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
AM1 calculations of compounds III and V reveal that the endo-endo V is by $34.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the endo-exo III. Thus, thermodynamics will favour the formation of V via endo-stereoselective 1,3-dipolar cycloaddition, which is in contrast to the obtained results. The endo-exo stereoselectivity of the cycloaddition reactions is due to secondary orbital interactions or steric effects [8]. The steric hindrance favours the endo-endo V adduct formation through the endo transition state. Since the 1,3-dipolar cycloadditions are kinetically controlled reactions, we have paid our attention to the secondary orbital interactions. Optimized geometries (AM1) of reactants I and I/ are shown in Formulae 1. The most
notable feature of AM1 calculations of the transition states for the 1,3-dipolar cycloaddition of benzonitrile oxide to I/ is that the HOMO in II is localized also at methylene bridge (Formulae 1), since the exo-cyclic double bond of methylene bridge mixes its π orbitals with unsubstituted double bond in $I I$. In addition, this overlap in II can support the exclusive exo attack of the dipole related to the methylene bridge through the secondary orbital interactions between LUMO of nitrogen in 1,3-dipole I and the HOMO, i.e. π orbital of the double bond in methylene bridge in II. This qualitative argument rationalizes the experimental observation.

EXPERIMENTAL

The melting points are uncorrected (Boetius), the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of deuterochloroform solutions were measured with Varian VXR 300 instrument, tetramethylsilane being the internal reference. All reagents were purified and dried if necessary prior to use. TLC analyses were carried out with Lachema UV_{254} silica gel plates.

The endo derivatives I/ were prepared by the treatment of R^{1}, R^{2}-substituted fulvenes with N-(3,5dichlorophenyl)maleimide [6].

1,3-Dipolar Cycloaddition

Triethylamine (13 mmol) in ether ($30 \mathrm{~cm}^{3}$) was added to a stirred solution of arylhydroximoyl chloride (10 mmol) and the dipolarophile $/ /(10 \mathrm{mmol})$ in ether $\left(30 \mathrm{~cm}^{3}\right)$ at $0-5{ }^{\circ} \mathrm{C}$ within 1 h . The reaction mixture was stirred overnight at room temperature, the separated triethylammonium chloride was filtered off, removed by dissolving in water and organic material was evaporated under diminished pressure, dried, and separated by chromatography on a silica gel column and purified by crystallization. Characteristic data for compounds III and IV are presented in Table 1 and ${ }^{1} \mathrm{H}$ NMR data are in Tables 2 and 3. ${ }^{13} \mathrm{C}$ NMR data (δ) are following:

Illa: 43.50, 43.87 (d, C-8, C-9), 44.93 (d, C-7), 46.70 (d, C-1), 53.25 (d, C-6), 82.16 (d, C-2), 124.96, 125.17, 126.72, 127.35, 127.89, 128.31, 129.22, 129.29, 130.28, 132.90, 135.24, 135.59, 137.93, 138.88, 139.39, 140.14 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}$), 156.00 (s, $\mathrm{C}=\mathrm{N}$), 174.00, $175.84(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

IIIb: 21.66 (q, CH_{3}), 43.46, 43.93 (d, C-8, C-9), 45.26 (d, C-7), 46.73 (d, C-1), 53.37 (d, C-6), 82.00 (d, C-2), 124.96, 125.05, 126.88, 127.31, 127.85, $127.89,128.30,128.67,129.24,129.31,129.90$, 132.88, 135.62, 137.85, 138.94, 139.66, 140.18, 140.56 ($\left.\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}\right)$, 155.92 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 174.05, $175.88(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

III

	R^{1}	R^{2}	X
a	Ph	Ph	H
b	Ph	Ph	$4-\mathrm{CH}_{3}$
c	Ph	Ph	$4-\mathrm{Cl}$
d	$2-\mathrm{Th}$	$2-\mathrm{Th}$	H
e	$2-\mathrm{Th}$	$2-\mathrm{Th}$	$4-\mathrm{CH}_{3}$
f	$2-\mathrm{Th}$	$2-\mathrm{Th}$	$4-\mathrm{Cl}$
g	$2-\mathrm{Th}$	Ph^{2}	$4-\mathrm{Cl}$
h	$2-\mathrm{Th}$	CH_{3}	$4-\mathrm{CH}_{3}$
i	$2-\mathrm{Th}$	CH_{3}	$4-\mathrm{Cl}$
j	CH_{3}	CH_{3}	$4-\mathrm{Cl}$
k	$2-\mathrm{Fu}$	CH_{3}	H
ℓ	$2-\mathrm{Fu}$	CH_{3}	$4-\mathrm{CH}$
m	$2-\mathrm{Fu}$	CH_{3}	$4-\mathrm{Cl}$
n	Ph	H	$4-\mathrm{Cl}$
0	$2-\mathrm{Th}$	H	$4-\mathrm{Cl}$
p	$2-\mathrm{Fu}$	H	$4-\mathrm{Cl}$

IIIc: 43.52, 43.75 (d, C-8, C-9), 45.17 (d, C-7), 46.61 (d, C-1), 53.14 (d, C-6), 82.39 (d, C-2), 124.92, 126.42, 127.53, 127.91, 127.97, 128.33, 128.53, 129.06, 129.28, 129.36, 132.79, 135.64, 136.26, 138.12, 138.60, 139.41, 140.10 ($\left.\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}\right), 155.17$ (s, $\mathrm{C}=\mathrm{N}$), 173.89, 174.82 (s, $\mathrm{C}=\mathrm{O}$).
IIId: 43.36 (d, C-7), $44.75,45.22$ (d, C-8, C-9), 47.75 (d, C-1), 53.48 (d, C-6), 82.35 (d, C-2), 124.22, 125.31, 126.43, 126.84, 126.99, 127.14, 127.96, 128.22, 129.22, 129.70, 130.79, 133.18, 135.97, 140.81, 141.33, 141.59 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {thienyl }}$, $\mathrm{C}_{\text {viny }}$), 156.07 (s, $\mathrm{C}=\mathrm{N}$), 174.15, 174.97 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IIIe: 21.76 (q, CH_{3}), 42.99 (d, C-7), 44.48, 44.90 (d, C-8, C-9), 47.43 (d, C-1), 53.26 (d, C-6), 81.83 (d, C-2), 124.94, 125.07, 126.05, 126.59, 126.73, 126.99, 127.88, 128.83, 129.35, 129.56, 132.83, 135.64, 140.54, 140.62, 141.05, 141.28 ($\mathrm{C}_{\text {arom, }}$, $\mathrm{C}_{\text {trienyl }}$, $\mathrm{C}_{\text {vinyl) }}$, 155.61 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 173.82, 174.63 (s, $\mathrm{C}=\mathrm{O}$). Illf: 43.06 (d, C-7), $44.31,44.85$ (d, C-8, C-9), 47.39
(d, C-1), 53.02 (d, C-6), 82.76 (d, C-2), 124.93, 126.19, 126.54, 126.58, 126.71, 127.02, 127.91, 127.99, 128.87, 129.16, 129.38, 132.84, 135.66, 136.44, 140.23, 141.12 ($\left.\mathrm{C}_{\text {arom, }}, \mathrm{C}_{\text {thienyl }}, \mathrm{C}_{\text {viny }}\right)$, 154.89 (s, $\mathrm{C}=\mathrm{N}$), 173.65, 174.54 (s, $\mathrm{C}=\mathrm{O}$).
IIIh: 21.76 (q, CH ${ }_{3}$), 42.79 (d, C-7), 45.45, 45.54 (d, C-8, C-9), 46.67 (d, C-1), 53.13 (d, C-6), 82.05 (d, C-2), 124.70, 124.83, 124.98, 125.26, 125.57, 126.62, 126.78, 129.33, 129.66, 132.96, 135.66, 137.15, 140.64, 142.62 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {thienyl }}, \mathrm{C}_{\text {vinyl }}$), 155.51 (s, $\mathrm{C}=\mathrm{N}$), 174.22, 174.89 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).
IVh: 21.50, 21.74 (q, CH_{3}), 46.63 (d, C-7), 43.21, 43.51 (d, C-8, C-9), 44.95 (d, C-1), 53.47 (d, C-6), 81.91 (d, C-2), 124.70, 124.77, 124.98, 125.09, 125.23, 126.58, 126.72, 129.66, 132.96, 135.59, 137.15, 140.70, 142.70 ($\left.\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {thienyl }}, \mathrm{C}_{\text {vinyl }}\right), 155.68$ (s, $\mathrm{C}=\mathrm{N}$), 174.09, 174.99 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).
IIIj: 20.99 ($\mathrm{q}, \mathrm{CH}_{3}$), 21.13 ($\mathrm{q}, \mathrm{CH}_{3}$), 42.04 (d, C-7), 45.44, 45.77 (d, C-8, C-9), 43.42 (d, C-1), 52.81 (d,

Table 1. Characteristic Data for Compounds III, IV

Compound	Formula M_{r}	Yield/ $/{ }^{\text {a }}$ M.p. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} w_{1} \text { (calc.)/ } / \% \\ w_{1} \text { (found)/ } / \% \end{gathered}$		
			C	H	N
IIIa	$\begin{gathered} \mathrm{C}_{35} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 591.5 \end{gathered}$	$\begin{gathered} 39 \\ 221-223 \end{gathered}$	$\begin{aligned} & 71.07 \\ & 70.77 \end{aligned}$	$\begin{aligned} & 4.09 \\ & 4.12 \end{aligned}$	$\begin{aligned} & 4.74 \\ & 4.79 \end{aligned}$
1116	$\begin{aligned} & \mathrm{C}_{36} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \\ & 605.5 \end{aligned}$	$\begin{gathered} 31 \\ 233-235 \end{gathered}$	$\begin{aligned} & 67.30 \\ & 66.91 \end{aligned}$	$\begin{aligned} & 3.72 \\ & 3.65 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.68 \end{aligned}$
IIIc	$\begin{gathered} \mathrm{C}_{35} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 625.9 \end{gathered}$	$\begin{gathered} 48 \\ 268-270 \end{gathered}$	$\begin{aligned} & 67.16 \\ & 67.30 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.72 \end{aligned}$	$\begin{aligned} & 4.48 \\ & 4.69 \end{aligned}$
IIId	$\begin{gathered} \mathrm{C}_{31} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\ 603.6 \end{gathered}$	$\stackrel{27}{210-213}$	$\begin{aligned} & 61.69 \\ & 61.27 \end{aligned}$	$\begin{aligned} & 3.34 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.59 \end{aligned}$
111	$\begin{gathered} \mathrm{C}_{32} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\ 617.6 \end{gathered}$	$\begin{gathered} 36 \\ 231-234 \end{gathered}$	$\begin{aligned} & 62.24 \\ & 61.83 \end{aligned}$	$\begin{aligned} & 3.59 \\ & 3.59 \end{aligned}$	$\begin{aligned} & 4.54 \\ & 4.59 \end{aligned}$
IIIf	$\begin{gathered} \mathrm{C}_{31} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\ 638.0 \end{gathered}$	$\begin{gathered} 37 \\ 234-236 \end{gathered}$	$\begin{aligned} & 58.36 \\ & 57.86 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.07 \end{aligned}$	$\begin{aligned} & 4.39 \\ & 4.47 \end{aligned}$
$I I I g+I V g$	$\begin{gathered} \mathrm{C}_{33} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{SO}_{3} \\ 632.0 \end{gathered}$	$\begin{gathered} 54 \\ 237-240 \end{gathered}$	$\begin{aligned} & 62.72 \\ & 62.66 \end{aligned}$	$\begin{aligned} & 3.35 \\ & 3.45 \end{aligned}$	$\begin{aligned} & 4.43 \\ & 4.56 \end{aligned}$
$I I I h+I V h$	$\begin{gathered} \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{SO}_{3} \\ 549.5 \end{gathered}$	$\begin{gathered} 47 \\ 275-278 \end{gathered}$	$\begin{aligned} & 63.39 \\ & 63.15 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 4.02 \end{aligned}$	$\begin{aligned} & 5.10 \\ & 5.02 \end{aligned}$
$I I I$ + IVi	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 569.9 \end{gathered}$	$\begin{gathered} 53 \\ 269-272 \end{gathered}$	$\begin{aligned} & 59.01 \\ & 58.95 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 3.38 \end{aligned}$	$\begin{aligned} & 4.92 \\ & 5.22 \end{aligned}$
IIIj	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 501.8 \end{gathered}$	$\begin{gathered} 36 \\ 283-285 \end{gathered}$	$\begin{aligned} & 59.84 \\ & 60.01 \end{aligned}$	$\begin{aligned} & 3.82 \\ & 3.96 \end{aligned}$	$\begin{aligned} & 5.58 \\ & 5.39 \end{aligned}$
$1 I / k+I V k$	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 519.4 \end{gathered}$	$\begin{gathered} 38 \\ 248-251 \end{gathered}$	$\begin{aligned} & 64.75 \\ & 64.98 \end{aligned}$	$\begin{aligned} & 3.88 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 5.39 \\ & 5.46 \end{aligned}$
$I I I \ell+I V \ell$	$\begin{gathered} \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 533.4 \end{gathered}$	$\begin{gathered} 36 \\ 273-276 \end{gathered}$	$\begin{aligned} & 65.30 \\ & 65.13 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 4.09 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.32 \end{aligned}$
IIIm	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 553.8 \end{gathered}$	$\begin{gathered} 37 \\ 226-228 \end{gathered}$	$\begin{aligned} & 60.72 \\ & 60.65 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 3.61 \end{aligned}$	$\begin{aligned} & 5.06 \\ & 4.98 \end{aligned}$
IIIn + IVn	$\begin{gathered} \mathrm{C}_{29} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ 549.8 \end{gathered}$	$\begin{gathered} 51 \\ 269-270 \end{gathered}$	$\begin{aligned} & 63.35 \\ & 63.51 \end{aligned}$	$\begin{aligned} & 3.48 \\ & 3.57 \end{aligned}$	$\begin{aligned} & 5.09 \\ & 5.27 \end{aligned}$
1110 + IVo	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{SO}_{3} \\ 555.9 \end{gathered}$	$\begin{gathered} 46 \\ 227-231 \end{gathered}$	$\begin{aligned} & 58.34 \\ & 58.02 \end{aligned}$	$\begin{aligned} & 3.08 \\ & 3.21 \end{aligned}$	$\begin{aligned} & 5.04 \\ & 4.98 \end{aligned}$
$1 I \prime p+I V p$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 539.8 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ 270-273 \\ \hline \end{gathered}$	$\begin{aligned} & 60.08 \\ & 59.78 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.17 \\ 3.30 \\ \hline \end{array}$	$\begin{array}{r} 5.19 \\ 5.16 \\ \hline \end{array}$

a) Yields are calculated for compounds purified by chromatography.

Table 2. ${ }^{1} \mathrm{H}$ NMR Data for Compounds III

Compound	$\delta, \mathrm{J} / \mathrm{Hz}$							
	H-2 ${ }^{\text {a }}$	$J_{2,6}$	H-6 ${ }^{\text {a }}$	$\mathrm{H}-1^{\text {b }}$	$J_{1,9}$	H-7, H-8, H-9 ${ }^{\text {c }}$	$\mathrm{H}_{\text {arom }}$	$\mathrm{CH}_{3}{ }^{\text {d }}$
IIIa	4.94	8.4	3.87	3.82	5.1	3.48	6.83-7.55	
IIIb	4.92	8.4	3.85	3.81	5.1	3.17	6.83-7.55	2.32
IIIc	4.90	8.4	3.75	3.73	5.0	3.48	6.84-7.50	
IIId	4.94	8.4	3.89	4.06	3.9	3.63	6.56-7.59	
IIIe	4.93	8.7	3.87	4.05	3.9	3.64	6.57-7.49	2.36
IIIf	4.95	8.4	3.84	4.05	3.9	3.63	6.61-7.51	
IIIg	4.98	8.4	3.77	4.26	5.4	3.40	6.52-7.80	
III'	4.88	8.7	3.61	3.92	5.1	3.42	6.58-7.51	2.37, 2.18
IIII	4.91	8.4	3.80	3.92	3.9	3.42	6.61-7.61	2.19
IIIj	4.82	8.7	3.76	3.64	5.1	3.40	7.26-7.58	1.73, 1.44
IIIk	4.91	8.4	3.91	4.55	5.1	3.58	6.35-7.67	1.73
III ℓ	4.89	8.4	3.88	4.52	5.1	3.57	6.37-7.56	2.36, 1.73
111 m	4.90	8.4	3.86	4.42	5.1	3.49	6.18-7.46	2.06
IIIn	4.97	8.4	3.86	4.07	5.4	3.41	6.40-7.60	
1110	4.96	8.4	3.83	4.26	4.8	3.39	6.45-7.59	
$111 p$	4.95	8.7	3.84	4.50	3.9	3.40	6.10-7.52	

a) Doublet; b) doublet of doublets; c) multiplet; d) singlet.

Table 3. ${ }^{1} \mathrm{H}$ NMR Data for Compounds IV

Compound	$\delta, J / \mathrm{Hz}$							
	$\mathrm{H}^{2} 2^{a}$	$J_{2,6}$	$\mathrm{H}-6^{a}$	$\mathrm{H}-7^{d}$	$J_{7,8}$	$\mathrm{H}-1, \mathrm{H}-8, \mathrm{H}-9^{c}$	$\mathrm{H}_{\mathrm{arom}}$	
IVg	4.89	8.4	3.89	4.01	5.1	3.50	$6.52-7.80$	
$I V h$	4.88	8.7	3.90	4.02	5.7	3.52	$6.55-7.55$	$2.37,2.18$
$I V i$	4.90	8.4	3.88	4.09	5.4	3.43	$6.61-7.61$	2.19
$I V k$	4.89	8.4	3.91	4.70	4.8	3.59	$6.14-7.57$	2.07
$I V \ell$	4.86	8.4	3.86	4.40	5.1	3.57	$6.14-7.43$	$2.36,2.07$
$I V n$	4.84	8.4	3.86	3.66	3.9	3.56	$6.59-7.59$	
$I V o$	4.89	8.7	3.92	4.16	5.4	3.49	$6.66-7.55$	
$I V p$	4.87	8.4	3.91	4.31	5.7	3.47	$6.25-7.52$	

a) Doublet; b) doublet of doublets; c) multiplet; d) singlet.

C-6), 82.45 (d, C-2), 124.95, 126.58, 127.33, 129.24, 132.94, 135.48, 136.28 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}$), 154.79 (s, $\mathrm{C}=\mathrm{N}$), 175.26, 174.43 (s, $\mathrm{C}=\mathrm{O}$).

IIIk: 17.27 ($\mathrm{q}, \mathrm{CH}_{3}$), 45.34 (d, C-7), 43.15, 43.58 (d, C-8, C-9), 46.52 (d, C-1), 52.64 (d, C-6), 82.04 (d, C-2), 109.39, 111.08, 119.41, 124.98, 126.75, 128.06, 129.04, 129.29, 130.38, 132.97, 135.26, 135.64, 142.47, 153.30 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {furyl }}, \mathrm{C}_{\text {vinyl }}$), 155.47 (s, $\mathrm{C}=\mathrm{N}$), 174.38, 175.03 ($\mathrm{s}, \mathrm{C=O}$).

IVk: $17.46\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.03$ (d, C-7), 42.85, 43.17 (d, C-8, C-9), 45.62 (d, C-1), 53.21 (d, C-6), 81.86 (d, C-2), 108.77, 110.77, 119.40, 124.99, 126.81, 128.29, 128.68, 129.27, 129.98, 133.00, 135.18, 135.62, 141.79, 153.16 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {furyl }}, \mathrm{C}_{\text {vinyl }}$), 155.95 $(\mathrm{s}, \mathrm{C}=\mathrm{N}), 174.33,175.16(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

III $\ell: 17.28\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.49\left(\mathrm{q}, \mathrm{CH}_{3}\right), 45.31$ (d, C7), 43.13, 43.59 (d, C-8, C-9), 46.50 (d, C-1), 52.74 (d, C-6), 82.19 (d, C-2), 109.32, 111.05, 119.30, 124.99, 125.12, 127.67, 129.24, 129.72, 132.99, 135.38, 135.58, 140.65, 142.41, 153.12 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {furyl }}$, $\left.\mathrm{C}_{\text {vinyl }}\right)$, $155.40(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 174.42,175.07(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

IV $\ell .17 .49\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.48\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.00(\mathrm{~d}, \mathrm{C}-$ 7), 42.86, 43.59 (d, C-8, C-9), 45.62 (d, C-1), 53.04 (d, C-6), 81.71 (d, C-2), 108.71, 110.78, 119.32, 125.03, 125.44, 126.75, 129.25, 129.38, 135.35, 135.60, 140.18, 141.78, 153.23 ($\left.\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {furyl }}, \mathrm{C}_{\text {vinyl }}\right)$, 155.87 (s, $\mathrm{C}=\mathrm{N}$), 174.39, 175.21 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IIIm: 17.43 ($\mathrm{q}, \mathrm{CH}_{3}$), 45.56 (d, C-7), 42.79, 42.88 (d, C-8, C-9), 46.95 (d, C-1), 53.00 (d, C-6), 82.13 (d, C-2), 108.92, 110.92, 119.42, 124.99, 126.83, 127.91, 128.00, 128.92, 129.26, 129.35, 132.93, 134.91, 135.57, 135.90, 141.80, 153.12 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {furyl }}$, $\mathrm{C}_{\text {vinyil }}$), 155.12 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 174.26, 175.14 (s, $\mathrm{C}=\mathrm{O}$).

IIIn: 44.76, 44.86 (d, C-8, C-9), 43.16 (d, C-7), 46.55 (d, C-1), 52.85 (d, C-6), 82.61 (d, C-2), 124.15, 124.96, 126.38, 127.96, 128.09, 128.30, 128.63, 129.34, 132.84, 135.41, 135.62, 136.53, 141.21
($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}$), 154.91 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 173.76, 174.75 (s , $\mathrm{C}=\mathrm{O}$).

IVn: 41.50, 42.78 (d, C-8, C-9), 45.38 (d, C-7), 50.21 (d, C-1), 53.17 (d, C-6), 81.97 (d, C-2), 124.33, 124.93, 126.39, 127.67, 128.10, 128.37, 128.63, 129.34, 132.87, 135.42, 135.60, 136.51, 141.24 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {vinyl }}$), 155.91 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 173.78, 174.77 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

IIIo: 45.26, 45.61 (d, C-8, C-9), 42.92 (d, C-7), 46.88 (d, C-1), 52.65 (d, C-6), 82.70 (d, C-2), 116.98, 124.96, 126.09, 126.37, 127.22, 128.10, 128.63, 129.35, 132.83, 135.65, 136.53, 138.23, 138.99 ($\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {thienyl}}, \mathrm{C}_{\text {vinyl }}$), $154.63(\mathrm{~s}, \mathrm{C}=\mathrm{N}$), 173.72, 174.84 (s, C=O).

IVo: 42.33, 42.97 (d, C-8, C-9), 50.39 (d, C-7), 45.30 (d, C-1), 53.30 (d, C-6), 81.91 (d, C-2), 117.24, 124.92, 125.82, 126.50, 126.97, 128.07, 128.61, 129.24, 132.84, 135.65, 136.39, 138.12, 138.52 ($\left.\mathrm{C}_{\text {arom }}, \mathrm{C}_{\text {thienyl }}, \mathrm{C}_{\text {vinyl }}\right), 154.59(\mathrm{~s}, \mathrm{C}=\mathrm{N}$), 173.77, 174.59 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

REFERENCES

1. Kozikowski, A. P., Acc. Chem. Res. 17, 410 (1984).
2. Torssell, K. B. G., Use of Nitrile Oxides, Nitrones and Silyl Nitronates in Organic Synthesis. Novel Strategies in Synthesis. Verlag Chemie, New York, 1988.
3. Jäger, V., Müller, I., Shohe, R., Frey, M., Ehrler, R., Häfele, B., and Schröter, D., Lect. Heterocycl. Chem. 8, 79 (1985).
4. Fišera, L., in Chemistry of Heterocyclic Compounds. (Kováč, J. and Zálupský, P., Editors.) P. 12. Elsevier, Amsterdam, 1988.
5. Fišera, L., Ondruš, V., and Timpe, H.-J., Collect. Czech. Chem. Commun. 55, 512 (1990).
6. Ondruš, V., Fišera, L., Ertl, P., Prónayová, N., and Polborn, K., Monatsh. Chem., in press.
7. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., J. Am. Chem. Soc. 107, 3902 (1985).
8. Ginsburg, V. A., Tetrahedron 39, 2095 (1983).

Translated by L. Fišer

[^0]: *The author to whom the correspondence should be addressed.

